Title: | Higher level interface to Mongo database |
---|---|
Description: | This is a wrapper for the jsonlite and mongolite packages which offers both an R6 object for managing the connection as well as some mechanisms for saving and restoring S4 objects to a Mongo database. |
Authors: | Russell Almond |
Maintainer: | Russell Almond <[email protected]> |
License: | Artistic-2.0 |
Version: | 0.9-5 |
Built: | 2024-12-25 04:27:01 UTC |
Source: | https://github.com/ralmond/mongo |
This is a wrapper for the jsonlite and mongolite packages which offers both an R6 object for managing the connection as well as some mechanisms for saving and restoring S4 objects to a Mongo database.
The DESCRIPTION file:
Package: | mongo |
Type: | Package |
Title: | Higher level interface to Mongo database |
Version: | 0.9-5 |
Date: | 2024/05/25 |
Authors@R: | person(given = "Russell", family = "Almond", role = c("aut", "cre"), email = "[email protected]", comment = c(ORCID = "0000-0002-8876-9337")) |
Author: | Russell Almond |
Maintainer: | Russell Almond <[email protected]> |
Depends: | R (>= 3.0), methods, futile.logger |
Imports: | jsonlite, mongolite |
Suggests: | rlang, withr, knitr, rmarkdown, tidyr, CPTtools, bookdown, devtools, testthat (>= 3.0.0) |
Description: | This is a wrapper for the jsonlite and mongolite packages which offers both an R6 object for managing the connection as well as some mechanisms for saving and restoring S4 objects to a Mongo database. |
Collate: | as.json.R MongoDB.R jqmongo.R FakeMongo.R |
License: | Artistic-2.0 |
URL: | https://github.com/ralmond/mongo |
Encoding: | UTF-8 |
LazyData: | true |
VignetteBuilder: | knitr |
RoxygenNote: | 7.3.1 |
Config/testthat/edition: | 3 |
Support: | c( 'Bill & Melinda Gates Foundation grant "Games as Learning/Assessment: Stealth Assessment" (#0PP1035331, Val Shute, PI)', 'National Science Foundation grant "DIP: Game-based Assessment and Support of STEM-related Competencies" (#1628937, Val Shute, PI)', 'National Scient Foundation grant "Mathematical Learning via Architectual Design and Modeling Using E-Rebuild." (\#1720533, Fengfeng Ke, PI)', 'Institute of Educational Statistics Grant: "Exploring adaptive cognitive and affective learning support for next-generation STEM learning games." (#R305A170376-20, Val Shute and Russell Almond, PIs') |
Roxygen: | list(markdown = TRUE) |
Config/pak/sysreqs: | libssl-dev libsasl2-dev |
Repository: | https://ralmond.r-universe.dev |
RemoteUrl: | https://github.com/ralmond/mongo |
RemoteRef: | HEAD |
RemoteSha: | 12736deb3b9d5d4ec90d58a77e7fd5915173a7e4 |
Index of help topics:
JSONDB-class Class which supports the mdbCRUD methods. MongoDB-class MongoDB - Reference class wrapping a connection to a Mongo database collection. MongoRec-class Class "MongoRec". as.json Converts S4 objects to JSON representation. buildJQterm Build a single query function. buildJQuery Transforms a query into JQuery JSON. codeClass Adds/removes package information to class descriptions fake_mongo-class A simulated 'MongoDB' object for testing getOneRec Fetches Messages from a Mongo databas iterator-class An object which iterates over a collection jlist List representation of a document. load_example Load example Event class m_id Accessor for the Mongo id element of a record. makeDBuri Creates the URI needed to connect to a mongo database. mdbAggregate Execute Aggregration Pipeline mdbAvailable Is the collection available for writing. mdbCount Counts the number of records matching Query. mdbDisconnect Disconnects connection to database. mdbDistinct Find the distinct values of a particular field mdbDrop Drops the database collection mdbExport Exports/imports data from external JSON or BSON file mdbFind Finds records which match the query and returns as data frame mdbIndex Build/remove an index for the collection. mdbInfo Get Information about the collection mdbInsert Insert a new record into a collection mdbIterate Returns documents as lists (jlists) from the database. mdbMapreduce Applies a summary operation to a collection mdbRemove Remove selected objects from collection mdbRename Renames collection or moves it to a new database mdbReplace Replace a document with a new document mdbRun Runs a Mongo command on the collection mdbUpdate Modify document(s) in a collection mongo-package Higher level interface to Mongo database parse.jlist Construct an S4 object from a list of its slot values. parseData Prepare R data for storage or restore R data from jlist #' The 'parseData' function is a helper function for 'parse.jlist()' methods, and 'unparseData' for 'as.jlist()', which represents complex objects as JSON. parsePOSIX Convert Mongo dates to POSIX parseSimpleData parseSimpleData saveRec Saves a MongoRec object to a Mongo database showCollections Shows collections in the current database. showDatabases Lists Databases unboxer Marks scalar objects to be preserved when converting to JSON
This package provides extensions to the 'mongolite' and 'jsonlite' package, specifically for saving and restoring S4 objects as JSON documents in a mongo database.
Using a mongo
object in an R6 reference class
presents a number of problems. In particular, there is potential race
condition where the prototype object is built during load time, and
the will try to make a connection to the database before the
appropriate code is loaded. The MongoDB
fixes
this problem. It is a wrapper for the mongo
object which is
created when first used (by calling the $db()
method).
The "mongo" package offers a number of generic functions which wrap
the corresponding method of the mongo
object:
mdbAggregate
,
mdbCount
,
mdbDisconnect
,
mdbDistinct
,
mdbDrop
,
mdbExport
,
mdbFind
,
mdbImport
,
mdbIndex
,
mdbInfo
,
mdbInsert
,
mdbIterate
,
mdbMapreduce
,
mdbRemove
,
mdbRename
,
mdbReplace
,
mdbRun
, and
mdbUpdate
. It also adds
showCollections
and
showDatabases
which operate like the corresponding Mongo
shell commands. All of these functions are S4 generics with methods
for both the mongo::MongoDB
and mongolite::mongo
objects.
The function buildJQuery
is a helper function which
creates JSON documents from R lists. For example,
buildJQuery(name="Fred",timestamp=list(gte=Sys.time()))
evaluates to
{ "name":"Fred", "timestamp":{ "$gte":[{"$date":1684370555315}] } }
The function buildJQterm
is a helper, and
makeDBuri
is used for setting the 'uri' (or 'url') field
for the MongoDB
class.
Saving an S4 object as a JSON document is a complex process. One
approach is to use the functions
jsonlite::serializeJSON
and
jsonlite::unserializeJSON
methods. These will
faithfully reproduce the object, but using the serialized object
outside of R (in particular, in a Mongo collection or with the command
line utility jq
) is very difficult.
A second approach is to first turn the object into a list using
attributes(obj)
, and then using
jsonlite::toJSON
and
jsonlite::fromJSON
to do the conversion. One
big problem with this approach is that these functions always turn R
object into JSON arrays, even if the value is a scalar. Also, the
types of the fields may not be the same after saving and restoring the
object.
To fix the scalar/vector problem, the function
unbox
function marks a value as a scalar. The
function unboxer
is improved version which descends
recursively through a complex list structure. The function
ununboxer
undoes the marking (mainly needed for
testing). The functions unparseData
and
parseSimpleData
provide some support for more complex
structures.
The as.json
function attempts to implement the second
approach in a way that is transparent to the end user, but requires
some effort on the part of the package designer. In particular, most
S4 classes will require a custom as.jlist
method which
does appropriate transformations on the fields of the object (now
elements of the list). The vignette "JSON for S4 objects" provides an
example.
The function parse.json
goes in the opposite direction.
The JSON is converted into a list and then passed along to the builder
function helper buildObject
. The builder calls
parse.jlist
to reverse the as.jlist
processing.
The default builder then passes the list to the new
function to
create the new object. This approach should work well for most S4
objects, but S3 objects may need a custom constructor. In this case,
the buildObject
default builder needs to be replaced with
custom code.
The vignette "JSON for S4 Objects" provides an extended example. The
example Event
and its associated as.jlist
and
parse.jlist
methods are found in the file
system.file("examples","Event.R",package="mongo")
. This file
can be loaded (used in some of the documentation examples) using the
function load_example
function.
Once the as.json
and parse.json
methods are built,
saving the S4 object in a Mongo collection is straightforward;
restoring the objects is also straightforward but requires the use of
mdbIterate
instead of mdbFind
(the latter
returns a data frame not a list).
The functions saveRec
, getOneRec
, and
getManyRecs
combine the calls to provide a
straightforward mechanism for saving and restorting S4 objects from a
database. S3 object may require a custom builder function (instead of
buildObject
), which can be passed as an optional
argument to getOneRec
or getManyRecs
.
Mongo databases use the special field "_id" to provide a unique
identifier for the collection. The class
MongoRec
is a simple class which provides that
field (and can be used in the contains
argument in the
setClass
method). The generic function m_id
gets
or sets the "_id" field. For objects that have not yet been
added to the database, the value NA_character_
should be used.
The saveRec
method modified its behavior based on the value of
the value of m_id(obj)
. If this is missing, saveRec
adds a new document to the collection, if it is present, then
saveRec
replaces the item in the collectin.
In designing a test suite for a class, it is often useful to 'mock'
functions which rely on external resources with ones which have more
predictable result. In particular, the fake_mongo
is a
drop in replacement for the MongoDB
function which
returns the results of various queries from a queue instead of a database.
The iterator
class is a simple queue implementation. It
is an R6 class with a collection of elements and a pointer to the next
item in the collection. The $hasNext()
method is a logical
method that checks for more elements and $nextElement()
which
returns the next element (and updates the pointer). The
$reset()
method moves the pointer back to the beginning with
and optional argument which replaces the element collection. It also
has $one()
and $batch(n)
methods so it can mock the
output of mdbIterate
.
The fake_mongo
class has queues corresponding to the
functions which return messages other than status messages.
Method | Queue Name |
mdbAggregate |
"aggregate" |
mdbCount |
"count" |
mdbDistinct |
"distinct" |
mdbFind |
"find" |
mdbIterate |
"iterate" |
mdbMapreduce |
"mapreduce" |
mdbRun |
"run" |
showCollections |
"collections" |
showDatabases |
"databases" |
The $que(which)
method returns the iterator
implementing the queue. The $resetQue(which)
method resets a
queue (with an optional arugment allowing to set a new collection of
elements) and $resetAll()
resets all queues.
Russell Almond
Maintainer: Russell Almond <[email protected]>
Mongolite User Manual: https://jeroen.github.io/mongolite/
Mongo DB command reference (make sure you look at the version corresponding to the mongo database used by your system). https://www.mongodb.com/docs/manual/reference/command/
vignette("json-aaquickstart",package="jsonlite")
mongolite
,
Proc4
(https://ralmond.r-universe.dev/ralmond/Proc4)
## Not run: vingette("JSON for S4 Objects") ## End(Not run)
## Not run: vingette("JSON for S4 Objects") ## End(Not run)
These methods extend the toJSON
function providing
an extensible protocol for serializing S4 objects. The function
as.json
turns the object into a string containing a JSON document by
first calling as.jlist
to convert the object into a list and then
calling toJSON
to do the work.
as.json( x, serialize = TRUE, dataframe = c("rows", "columns", "values"), matrix = c("rowmajor", "columnmajor"), Date = c("ISO8601", "epoch"), POSIXt = c("string", "ISO8601", "epoch", "mongo"), factor = c("string", "list"), complex = c("string", "list"), raw = c("base64", "hex", "mongo", "int", "js"), null = c("list", "null"), na = c("null", "string") ) as.jlist(obj, ml, serialize = TRUE) ## S4 method for signature 'ANY' as.json( x, serialize = TRUE, dataframe = c("rows", "columns", "values"), matrix = c("rowmajor", "columnmajor"), Date = c("ISO8601", "epoch"), POSIXt = c("string", "ISO8601", "epoch", "mongo"), factor = c("string", "list"), complex = c("string", "list"), raw = c("base64", "hex", "mongo", "int", "js"), null = c("list", "null"), na = c("null", "string") ) ## S4 method for signature 'MongoRec' as.json( x, serialize = TRUE, dataframe = c("rows", "columns", "values"), matrix = c("rowmajor", "columnmajor"), Date = c("ISO8601", "epoch"), POSIXt = c("string", "ISO8601", "epoch", "mongo"), factor = c("string", "list"), complex = c("string", "list"), raw = c("base64", "hex", "mongo", "int", "js"), null = c("list", "null"), na = c("null", "string") ) ## S4 method for signature 'ANY,list' as.jlist(obj, ml, serialize = TRUE) ## S4 method for signature 'MongoRec,list' as.jlist(obj, ml, serialize = TRUE)
as.json( x, serialize = TRUE, dataframe = c("rows", "columns", "values"), matrix = c("rowmajor", "columnmajor"), Date = c("ISO8601", "epoch"), POSIXt = c("string", "ISO8601", "epoch", "mongo"), factor = c("string", "list"), complex = c("string", "list"), raw = c("base64", "hex", "mongo", "int", "js"), null = c("list", "null"), na = c("null", "string") ) as.jlist(obj, ml, serialize = TRUE) ## S4 method for signature 'ANY' as.json( x, serialize = TRUE, dataframe = c("rows", "columns", "values"), matrix = c("rowmajor", "columnmajor"), Date = c("ISO8601", "epoch"), POSIXt = c("string", "ISO8601", "epoch", "mongo"), factor = c("string", "list"), complex = c("string", "list"), raw = c("base64", "hex", "mongo", "int", "js"), null = c("list", "null"), na = c("null", "string") ) ## S4 method for signature 'MongoRec' as.json( x, serialize = TRUE, dataframe = c("rows", "columns", "values"), matrix = c("rowmajor", "columnmajor"), Date = c("ISO8601", "epoch"), POSIXt = c("string", "ISO8601", "epoch", "mongo"), factor = c("string", "list"), complex = c("string", "list"), raw = c("base64", "hex", "mongo", "int", "js"), null = c("list", "null"), na = c("null", "string") ) ## S4 method for signature 'ANY,list' as.jlist(obj, ml, serialize = TRUE) ## S4 method for signature 'MongoRec,list' as.jlist(obj, ml, serialize = TRUE)
x |
An (S4) object to be serialized. |
serialize |
logical – Preserve all R information at the expense of legibility. Passed to |
dataframe |
("rows", "columns", "values") – Order for data frames. Passed to |
matrix |
("rowmajor" "columnmajor") – Order for matrix elements. Passed to |
Date |
("ISO8601" "epoch") – Passed to |
POSIXt |
("string" "ISO8601" "epoch" "mongo") – Date/time format. Passed to |
factor |
("string" "list") – Treatment of factor variables. Passed to |
complex |
("string" "list") – Representation for complex numbers. Passed to |
raw |
("base64" "hex" "mongo" "int" "js") – Treatment of raw data. Passed to |
null |
("list" "null") – Treatment of null fields. Passed to |
na |
("null" "string") – Representation for NA's. Passed to |
obj |
The object being serialized |
ml |
A list of fields of the object; usually |
The existing toJSON
does not support S4 objects, and
the serializeJSON
provides too much detail; so while
it is good for saving and restoring R objects, it is not good for sharing
data between programs. The function as.json
and as.jlist
are
S4 generics, so they can be easily extended to other classes.
The default method for as.json
is essentially toJSON(
as.jlist(x, attributes(x)))
. The function attributes(x)
turns the
fields of the object into a list, and then the appropriate method for
as.jlist
further processes those objects. For example, it can set
the "_id"
field used by the Mongo DB as a unique identifier (or other
derived fields) to NULL
.
Another important step is to call unboxer
on fields which should not
be stored as vectors. The function toJSON
by default wraps all R
objects in ‘[]’ (after all, they are all vectors), but that is
probably not useful if the field is to be used as an index. Wrapping the
field in unboxer()
, i.e., using ml$field <- unboxer(ml$field)
,
suppresses the brackets. The function unboxer()
in this package is
an extension of the jsonlite::unbox
function, which
does not properly unbox POSIXt objects.
Finally, for a field that can contain arbitrary R objects, the function
unparseData
coverts the data into a JSON string which will
completely recover the data. The serialize
argument is passed to
this function. If true, then serializeJSON
is used
which produces safe, but not particularly human editable JSON. If false, a
simpler method is employed which produes more human readable code. This
with should work for simpler data types, but does not support objects, and
may fail with complex lists.
The function as.json
returns a unicode string with a serialized
version of the object.
The function as.jlist
returns a list of the fields of the object
which need to be serialized (usually through a call to
toJSON
.
as.json(MongoRec)
: The as.json
for \linkS4class{MongoRec}
objects defaults to
using "mongo" format for the POSIXt
and raw
options.
as.jlist(obj = ANY, ml = list)
: This is the default method, it simply returns
the list of slots ml
. This also does not contain a call to
callNextMethod
, so it will serve as the termination point for an
inheritance chain.
as.jlist(obj = MongoRec, ml = list)
: This method actually removes the Mongo id
(_id
) as generally, that is not pass as part of an update query.
Russell Almond
In this package: buildObject
, saveRec
,
parseData
, parseSimpleData
In the jsonlite package: toJSON
,
serializeJSON
,
jsonlite::unbox
## Not run: vingette("JSON for S4 Objects") ## End(Not run)
## Not run: vingette("JSON for S4 Objects") ## End(Not run)
Build a single query function.
buildJQterm(name, value)
buildJQterm(name, value)
name |
character name of the referenced field |
value |
vector named collection of possible values. |
This is mostly an internal function, but may be of some use.
character scalar giving JSON expression
buildJQterm("uid","Fred") buildJQterm("uid",c("Phred","Fred")) buildJQterm("time",Sys.time()) buildJQterm("num",1:4) buildJQterm("num",c(gt=7)) buildJQterm("num",c(lt=7)) buildJQterm("num",c(gte=7)) buildJQterm("num",c(lte=7)) buildJQterm("num",c(ne=7)) buildJQterm("num",c(eq=7)) buildJQterm("num",c(gt=2,lt=7)) buildJQterm("count",c(nin=1,2:4)) buildJQterm("count",c("in"=1,2:4)) buildJQterm("count",c(ne=1,ne=5))
buildJQterm("uid","Fred") buildJQterm("uid",c("Phred","Fred")) buildJQterm("time",Sys.time()) buildJQterm("num",1:4) buildJQterm("num",c(gt=7)) buildJQterm("num",c(lt=7)) buildJQterm("num",c(gte=7)) buildJQterm("num",c(lte=7)) buildJQterm("num",c(ne=7)) buildJQterm("num",c(eq=7)) buildJQterm("num",c(gt=2,lt=7)) buildJQterm("count",c(nin=1,2:4)) buildJQterm("count",c("in"=1,2:4)) buildJQterm("count",c(ne=1,ne=5))
This function takes a query which is expressed in the argument list and
transforms it into a JSON query document which can be used with the Mongo
Database. The function buildJQterm
is a helper function which builds
up a single term of the query.
buildJQuery(..., rawfields = character())
buildJQuery(..., rawfields = character())
... |
This should be a named list of arguments. The values should be the desired query value, or a more complex expression (see details). |
rawfields |
These arguments are passed as character vectors directly into the query document without processing. |
A typical query to a Mongo database collection is done with a JSON object which has a number of bits that look like “field:value”, where field names a field in the document, and value is a value to be matched. A record matches the query if all of the fields specified in the query match the corresponding fields in the record.
Note that value could be a special expression which gives specifies a
more complex expression allowing for ranges of values. In particular, the
Mongo query language supports the following operators: "$eq", "$ne",
"$gt", "$lt", "$gte", "$lte"
. These can be specified using a value of the
form c(<op>=<value>)
, where op is one of the mongo operators,
without the leading ‘$’. Multiple op–value pairs can be specified;
for example, count=c(gt=3,lt=6)
. If no op is specified, then
"$eq"
is assumed. Additionally, the "$oid"
operator can be
used to specify that a value should be treated as a Mongo record identifier.
The "$in"
and "$nin"
are also ops, but the corrsponding value
is a vector. They test if the record is in or not in the specified value.
If the value is vector valued, and no operator is specified it defaults to
"$in"
.
The function buildJQuery
processes each of its arguments, adding them
onto the query document. The rawfields
argument adds the fields onto
the document without further processing. It is useful for control arugments
like "$limit"
and "$sort"
.
The function buildJQuery
returns a unicode string which
contains the JSON query document.
Russell Almond
The MongoDB 4.0 Manual: https://docs.mongodb.com/manual/
as.json
, mdbFind
,
getOneRec
, getManyRecs
mongo
buildJQuery(app="default",uid="Phred") buildJQuery("_id"=c(oid="123456789")) buildJQuery(name="George",count=c(gt=3,lt=5)) buildJQuery(name="George",count=c(gt=3,lt=5), rawfields=c('"$limit":1','"$sort":{timestamp:-1}')) ## Queries on IDs need special handling buildJQuery("_id"=c(oid="123456789abcdef"))
buildJQuery(app="default",uid="Phred") buildJQuery("_id"=c(oid="123456789")) buildJQuery(name="George",count=c(gt=3,lt=5)) buildJQuery(name="George",count=c(gt=3,lt=5), rawfields=c('"$limit":1','"$sort":{timestamp:-1}')) ## Queries on IDs need special handling buildJQuery("_id"=c(oid="123456789abcdef"))
If the class has a "package" attribute, then changes the descriptor to a form
"package::classname", e.g., the MongoRec
class, which lives in the
"mongo" package becomes mongo::MongoRec
. The function decodeClass()
reverses this.
codeClass(class) decodeClass(class)
codeClass(class) decodeClass(class)
class |
character Class identifiers. For |
The function codeClass()
returns a character vector with "package" attributes changed to
"package::" prefixes. The function decodeClass()
returns a character vector with "package::"
prefixes removed and "package" attributes set.
The codeClass()
function applies unboxer()
to mark single class names as singletons.
The decodeClass()
function applies ununboxer()
to remove the mark if needed. Also,
if class
is a list (happens if it was not quoted with unboxer()
when saved to JSON),
decodeClass()
will try to coerce it into a character vector.
codeClass(class(MongoRec())) codeClass(class(matrix(1:4,2,2))) decodeClass(codeClass(class(MongoRec()))) decodeClass(codeClass(class(matrix(1:4,2,2))))
codeClass(class(MongoRec())) codeClass(class(matrix(1:4,2,2))) decodeClass(codeClass(class(MongoRec()))) decodeClass(codeClass(class(matrix(1:4,2,2))))
MongoDB
object for testingThis class simulates the behavior of a mongo collection providing a set of scripted responses to queries. In particular,
mdbAggregate()
, mdbCount()
, mdbDistinct()
, mdbFind()
, mdbIterate()
, mdbMapreduce()
,
mdbRun()
, showCollections()
and showDatabases()
methods are overridden to return prespecified
results in order. Usually, no connection is made to an actual database, so this can be used to run tests
in environments where it is unknown whether or not an appropriate mongo database is available.
fake_mongo( collection = "test", db = "test", url = "mongodb://localhost", verbose = FALSE, options = mongolite::ssl_options(), noMongo = TRUE, logging = TRUE, aggregate = list(), count = list(), distinct = list(), find = list(), iterate = list(), mapreduce = list(), run = list(), databases = list(), collections = list() ) ## S4 method for signature 'fake_mongo' mdbAvailable(db) ## S4 method for signature 'fake_mongo' mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE ) ## S4 method for signature 'fake_mongo' mdbCount(db, query = "{}") ## S4 method for signature 'fake_mongo' mdbDisconnect(db) ## S4 method for signature 'fake_mongo' mdbDistinct(db, key, query = "{}") ## S4 method for signature 'fake_mongo' mdbDrop(db) ## S4 method for signature 'fake_mongo' mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) ## S4 method for signature 'fake_mongo' mdbImport(db, con = stdout(), bson = FALSE) ## S4 method for signature 'fake_mongo' mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 ) ## S4 method for signature 'fake_mongo' mdbIndex(db, add = NULL, remove = NULL) ## S4 method for signature 'fake_mongo' mdbInfo(db) ## S4 method for signature 'fake_mongo' mdbInsert(db, data, pagesize = 100, stop_on_error = TRUE, ...) ## S4 method for signature 'fake_mongo' mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'fake_mongo' mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0) ## S4 method for signature 'fake_mongo' mdbRemove(db, query = "{}", just_one = FALSE) ## S4 method for signature 'fake_mongo' mdbRename(mdb, name, db = NULL) ## S4 method for signature 'fake_mongo' mdbReplace(db, query, update = "{}", upsert = FALSE) ## S4 method for signature 'fake_mongo' mdbUpsert(db, query, update = "{}", upsert = TRUE) ## S4 method for signature 'fake_mongo' mdbRun(db, command = "{\"ping\":1}", simplify = TRUE) ## S4 method for signature 'fake_mongo' mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE ) ## S4 method for signature 'fake_mongo' showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'fake_mongo' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() )
fake_mongo( collection = "test", db = "test", url = "mongodb://localhost", verbose = FALSE, options = mongolite::ssl_options(), noMongo = TRUE, logging = TRUE, aggregate = list(), count = list(), distinct = list(), find = list(), iterate = list(), mapreduce = list(), run = list(), databases = list(), collections = list() ) ## S4 method for signature 'fake_mongo' mdbAvailable(db) ## S4 method for signature 'fake_mongo' mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE ) ## S4 method for signature 'fake_mongo' mdbCount(db, query = "{}") ## S4 method for signature 'fake_mongo' mdbDisconnect(db) ## S4 method for signature 'fake_mongo' mdbDistinct(db, key, query = "{}") ## S4 method for signature 'fake_mongo' mdbDrop(db) ## S4 method for signature 'fake_mongo' mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) ## S4 method for signature 'fake_mongo' mdbImport(db, con = stdout(), bson = FALSE) ## S4 method for signature 'fake_mongo' mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 ) ## S4 method for signature 'fake_mongo' mdbIndex(db, add = NULL, remove = NULL) ## S4 method for signature 'fake_mongo' mdbInfo(db) ## S4 method for signature 'fake_mongo' mdbInsert(db, data, pagesize = 100, stop_on_error = TRUE, ...) ## S4 method for signature 'fake_mongo' mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'fake_mongo' mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0) ## S4 method for signature 'fake_mongo' mdbRemove(db, query = "{}", just_one = FALSE) ## S4 method for signature 'fake_mongo' mdbRename(mdb, name, db = NULL) ## S4 method for signature 'fake_mongo' mdbReplace(db, query, update = "{}", upsert = FALSE) ## S4 method for signature 'fake_mongo' mdbUpsert(db, query, update = "{}", upsert = TRUE) ## S4 method for signature 'fake_mongo' mdbRun(db, command = "{\"ping\":1}", simplify = TRUE) ## S4 method for signature 'fake_mongo' mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE ) ## S4 method for signature 'fake_mongo' showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'fake_mongo' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() )
collection |
character – name of the referenced collection |
db |
character – name of the referenced database |
url |
character – URI for accessing the database. |
verbose |
logical – passed to |
options |
ANY – SSL options passed to |
noMongo |
logical – If true (default), no attempt is made to connect to the Mongo database. |
logging |
logical – If true (default), then calls to the database will be logged. |
aggregate |
list – simulated responses from |
count |
list – simulated responses from |
distinct |
list – simulated responses from |
find |
list – simulated responses from |
iterate |
list – simulated responses from |
mapreduce |
list – simulated responses from |
run |
list – simulated responses from |
databases |
list – simulated responses from |
collections |
list – simulated responses from |
pipeline , handler , pagesize , query , key , fields , sort , skip , limit , map , reduce , command , simplify , uri , dbname , con , bson , add , remove , data , stop_on_error , just_one , mdb , name , update , upsert , filters , multiple , ...
|
–
arguments to the generic functions which are ignored in the |
Internally the fake_mongo
class has a list of iterators named "aggregate", "count", "distinct", "find",
"iterate", "mapreduce", "run", "databases", and "collections". The corresponding methods will return the next entry
in the iterator (if it exists) or else will call the parent method to get the default return value (varies with generic
function). Usually, no connection to a mongo database is made.
The Queue names are given in the following table.
Method | Queue Name |
mdbAggregate |
"aggregate" |
mdbCount |
"count" |
mdbDistinct |
"distinct" |
mdbFind |
"find" |
mdbIterate |
"iterate" |
mdbMapreduce |
"mapreduce" |
mdbRun |
"run" |
showCollections |
"collections" |
showDatabases |
"databases" |
These names are used as which
arguments to the $que(which)
and $resetQueue(which)
methods as well as for initializing the queue using the fake_mongo
constructor.
If logging is turned on (either by setting logging=TRUE
in the constructor, or by calling
$logging(TRUE)
, then each mdbXXX
method will log the call to the log
collection.
The $getLog()
and $lastLog()
methods access the queue, and $resetQueue()
resets it.
An object of class fake_mongo
An object of type 'fake_mongo
fake_mongo()
: Constructor
queues
a named list of
\linkS4class{iterator}
objects which provide the
simulated responses.
log
a list of database calls made
logp
logical If TRUE
then method class
will be logged.
$initialize(...)
– See fake_mongo
function for arguments.
$que(which)
– Returns an individual response queue as an
\linkS4class{iterator}
The which
argument should be one of the
names in the table in the Details session.
$resetQueue(which, newElements=NULL)
– Calls the $reset()
method on
\linkS4class{iterator}
associated with operation which
. If
newElements
is supplied, the elements or the iterator are replaced.
Note that if which="iterate"
, then the queue is an iterator which
returns iterators. The $reset()
method is called on all of the
elements of the queue as well.
$resetAll()
– Resets all Queues.
$logging(newState)
Checks or sets the logging state. If the
argument is supplied, this sets the state.
logCall(call)
– Logs a database CRUD operation.
The call
argument is a named list. The first element, named op
is the database operation (the name of the call minus the mdb
prefix).
The remaining arguments are the values of the arguments in the CRUD call.
getLog(newestFirst=TRUE) – Fetches the entire log. Log is stored with the newest call first (reverse chronological order), so this is the default order.
$lastLog()
– Returns the most recently added element in the
log.
$resetLog()
– Clears the call log.
This class overrides all of the normal CRUD (mdbXXX
)
methods.
For all methods, the internal $logCall()
method is called giving
the details of the call.
For the methods which correspond to a queue, the next element in the corresponding queue will be returned.
This allows faking the database connection to test functions which interact with the mongo database.
showClass("fake_mongo")
showClass("fake_mongo")
This function fetches MongoRec
objects from a
mongo
database. The message parser is passed as an
argument, allowing it to fetch other kinds of objects than P4Messages. The
function getManyRecs
retrieves all matching objects and the function
getOneRec
retrieves the first matching object.
getOneRec( col, jquery = "{}", builder = buildObject, sort = buildJQuery(timestamp = -1) ) getManyRecs( col, jquery, builder = buildObject, sort = buildJQuery(timestamp = -1), skip = 0, limit = 0 )
getOneRec( col, jquery = "{}", builder = buildObject, sort = buildJQuery(timestamp = -1) ) getManyRecs( col, jquery, builder = buildObject, sort = buildJQuery(timestamp = -1), skip = 0, limit = 0 )
col |
(or MongoDB mongo) A reference to a Mongo collection. |
jquery |
A string providing a Mongo JQuery to select the appropriate
records. See |
builder |
A function which will take the list of fields returned from
the database and build an appropriate R object. See
|
sort |
A named numeric vector giving sorting instructions. The names
should correspond to fields of the objects, and the values should be positive
or negative one for increasing or decreasing order. Use the value
|
skip |
integer This many records should be skipped before returning records |
limit |
A numeric scalar giving the maximum number of objects to
retrieve. If |
This function assumes that a number of objects (usually, but not necessarily
subclasses of MongoRec
objects) have been stored in a Mongo
database. The col
argument is the MongoDB
object in which they are stored. These functions retrieve the selected
objects.
The first argument should be a string containing a JSON query document.
Normally, thes are constructed through a call to buildJQuery
.
The query is used to create an iterator over JSON documents stored in the
database. At each round, the iterator extracts the JSON document as a
(nested) list structure. This is passed to the builder
function to
build an object of the specified type. See the buildObject
function for an example builder.
The sorting argument controls the way the returned list of objects is
sorted. This should be a numeric vector with names giving the field for
sorting. The default values c("timestamp"=1)
and
c("timestamp"=-1)
sort the records in ascending and descending order
respectively. In particular, the default value for getOneRec
means
that the most recent value will be returned. The defaults assume that
“timestamp” is a field of the stored object. To suppress sorting of
outputs, use NULL
as the argument to sort
.
The function getOneRec
returns an object whose type is determined by
the output of the builder
function. The default \link{buildObject}
method uses
the class
field of the record is used to select the object type. (It assumes a \link{parse.jlist}
method is available for that object type.)
The function getManyRecs
returns a list of object whose type is
determined by the output of the builder
function.
Russell Almond
The MongoDB Manual: https://docs.mongodb.com/manual/
saveRec
, buildObject
,
getOneRec
, getManyRecs
mongo
## Not run: ## Requires Mongo test database to be set up. load_Events() m1 <- new("Event", uid="James Goodfellow",mess="Task Done",processed=FALSE, timestamp=Sys.time(), data=list("Selection"="B")) m2 <- new("Event", uid="James Goodfellow", mess="New Obs", processed=FALSE, timestamp=Sys.time(), data=list("isCorrect"=TRUE,"Selection"="B")) m3 <- new("Event", uid="Fred",mess="New Stats", timestamp=Sys.time(), data=list("score"=1,"theta"=0.12345,"noitems"=1)) EventDB <- MongoDB(Event,noMongo=!interactive()) Assign these back to themselves to capture the mongo ID m1 <- saveRec(EventDB,m1) m2 <- saveRec(EventDB,m2) m3 <- saveRec(EventDB,m3) m1@data$time <- list(tim=25.4,units="secs") m1 <- saveRec(EventDB,m1) ## Note use of oid keyword to fetch object by Mongo ID. m1a <- getOneRec(EventDB,buildJQuery("_id"=c(oid=m1@"_id"))) m123 <- getManyRecs(EventDB,buildJQuery(uid="Fred")) m23 <- getManyRecs(EventDB,buildJQuery(uid="Fred",sender=c("EI","EA"))) m321 <- getManyRecs(EventDB,buildJQuery(uid="Fred",timestamp=c(lte=Sys.time())), sort=c(timestamp=-1)) getManyRecs(EventDB,buildJQuery(uid="Fred", timestamp=c(gte=Sys.time()-as.difftime(1,units="hours")))) ## End(Not run)
## Not run: ## Requires Mongo test database to be set up. load_Events() m1 <- new("Event", uid="James Goodfellow",mess="Task Done",processed=FALSE, timestamp=Sys.time(), data=list("Selection"="B")) m2 <- new("Event", uid="James Goodfellow", mess="New Obs", processed=FALSE, timestamp=Sys.time(), data=list("isCorrect"=TRUE,"Selection"="B")) m3 <- new("Event", uid="Fred",mess="New Stats", timestamp=Sys.time(), data=list("score"=1,"theta"=0.12345,"noitems"=1)) EventDB <- MongoDB(Event,noMongo=!interactive()) Assign these back to themselves to capture the mongo ID m1 <- saveRec(EventDB,m1) m2 <- saveRec(EventDB,m2) m3 <- saveRec(EventDB,m3) m1@data$time <- list(tim=25.4,units="secs") m1 <- saveRec(EventDB,m1) ## Note use of oid keyword to fetch object by Mongo ID. m1a <- getOneRec(EventDB,buildJQuery("_id"=c(oid=m1@"_id"))) m123 <- getManyRecs(EventDB,buildJQuery(uid="Fred")) m23 <- getManyRecs(EventDB,buildJQuery(uid="Fred",sender=c("EI","EA"))) m321 <- getManyRecs(EventDB,buildJQuery(uid="Fred",timestamp=c(lte=Sys.time())), sort=c(timestamp=-1)) getManyRecs(EventDB,buildJQuery(uid="Fred", timestamp=c(gte=Sys.time()-as.difftime(1,units="hours")))) ## End(Not run)
An iterator
loops through a collection using the $hasNext()
and $nextElement()
methods.
This class also supports the $one()
and $batch()
methods to mimic the iterator returned
by the \link[mongolite]{mongo}()$iterate()
method.
iterator(elements = list())
iterator(elements = list())
elements |
A list of elements for the iterator to return. |
An object of class iterator.
The newly created iterator.
elements
list – The objects to return
position
integer – a pointer to the last returned object
$initialize(elements=list(),...)
Constructor
$hasNext()
– Logical value. Checks whether there are unseen
elements in the collection. Position is not advanced.
'$nextElement(warn=TRUE)Returns the next item in the collection and advances the position. If no items remain, then
NULLis returned and a warning is issued if
warnis
TRUE'.
$one()
Returns the next item in the collection. Designed
to mimic the return from the \link[mongolite]{mongo}$iterate()
function. The next object, or NULL
(without a warning) if the
collection is empty.
$batch(count)
Fetechs count
elements as a list, advancing
the position by the argument. Issues a warning if there
are not count
elements left in the collection.
Advances the position by count
.
$reset()
Resets the position back to the beginning. If an
argument is supplied, it also replaces the elements
.
This is a utility class that serves two purposes.
(1) It implements a result queue for the linkS4class{fake_mongo}
class.
(2) it mimics the iterator returned by the mdbIterate()
generic function, and so can be used in the result queue for the
mdbIterate-fake_mongo
method.
Unlike the internal iterator class from the mongolite
, this one
has a $hasNext()
method which is part of the general iterator
recipe. The $one()
and $batch()
methods should be compatible
with the internal mongolite
iterator, can so it can be used as
drop in replacement.
mdbIterate()
, \linkS4class{fake_mongo}
iter <- iterator(as.list(1:5)) while (iter$hasNext()) print(iter$nextElement())
iter <- iterator(as.list(1:5)) while (iter$hasNext()) print(iter$nextElement())
A namedList
which corresponds to a Mongo document; this is not an
official type, but rather a particular use of use of the primitive
namedList
type. The field names are given by the names and the
values are the list values. If any of the elements is a list, then
it is a sub-document. The jsonlite
package provides a toJSON
and fromJSON
method for converting between jlists and JSON
character objects.
Note that R makes no distinction between scalars and vectors of
length 1; however, JSON does. For example, '{"scalar":0, "vector":[0]}'
. The jsonlite
package provides a tool
\link[jsonlite]{unbox}
which marks the element as a scalar. The
function \link{unboxer}
will do this recursively over a jlist
object.
The distinction between vectors and scalars is unimportant if the
goal is simply to save and restore the object, but if the goal is
to build an index over the field (\link{mdbIndex}
), then scalars
are easier to work with than vectors. To covert an S4 object to a
class, the solution is to write a method for the \link{as.jlist}
method which makes appropriate transformations of the fields (and a
\link{parse.jlist}
method to reverse the process).
\link{as.jlist}
, \link{buildObject}
, \link[jsonlite]{toJSON}
,
\link[jsonlite]{fromJSON}
, \link{mdbIterate}
,
\link[jsonlite]{unbox}
, \link{unboxer}
Class which supports the mdbCRUD methods.
The CRUD (Create, Read, Update and Delete) are the basic set of
operators for manipulating a database. The mongo
package defines
a number of operators (mostly named mdbXXX
) which calls the
corresponding CRUD operations. The JSONDB
class is intended for
any class that supports these operations.
The following operations are supported:
mdbAvailable()
– Returns logical value. If false, CRUD operations
will basically be no-ops.
mdbAggregate()
– Runs an aggregation pipeline
mdbCount()
– Counts records matching query
mdbDisconnect()
– Drops connection to database (will be
reconnected on next operation).
mdbDistinct()
– Lists unique values of a field.
mdbDrop()
– Drops the collection from the database. This is a
fast way to clear a database.
mdbImport()
,mdbExport()
– Imports/Exports documents
into/from a collection from a file (or connection).
mdbFind()
– Finds documents matching query and returns result
as a data.frame
.
mdbIndex()
– Adds or removes an index from a collection.
mdbInfo()
– Returns info about a collection.
mdbInsert()
– Adds one or more documents into a collections.
Works with both data.frame
(one document per row) and JSON
character vectors (one document per element).
mdbIterate()
/mdbFindL()
– Finds documents matching query and returns
these as an iterator/list.
mdbMapreduce()
– Executes a mapreduce operation using
javascript map and reduce oerations.
mdbRemove()
– Removes matching documents from a collection.
mdbRename()
– Renames a collection.
mdbReplace()
/mdbUpsert()
– Replaces a document in a
collection.
mdbRun()
– Runs a Mongo command.
mdbUpdate()
– Modifies records in a database.
showDatabases()
– Lists available databases.
showCollections()
– Lists collections in a database.
This function loads the example "Event" class; needed for examples.
load_example()
load_example()
invisible details about package
load_example() fred1 ## sample data item. ## The source file system.file("examples","Event.R",package="mongo")
load_example() fred1 ## sample data item. ## The source file system.file("examples","Event.R",package="mongo")
Objects of class MongoRec
have a _id
slot
which stores the database ID. This function accesses it.
m_id(x) m_id(x) <- value ## S4 method for signature 'MongoRec' m_id(x) ## S4 replacement method for signature 'MongoRec' m_id(x) <- value
m_id(x) m_id(x) <- value ## S4 method for signature 'MongoRec' m_id(x) ## S4 replacement method for signature 'MongoRec' m_id(x) <- value
x |
An object of type MongoRec. |
value |
(character) the new ID value, use |
The _id
slot should be a character object with the name
“oid”. The methods enforce this. If the object does not
have a Mongo ID (i.e., it was never stored in a database), then the
value of _id
should be NA_character_
.
m_id(x) <- value
: Setter for Mongo ID
mr <- MongoRec() m_id(mr) # NA m_id(mr) <- "012345" m_id(mr)
mr <- MongoRec() m_id(mr) # NA m_id(mr) <- "012345" m_id(mr)
This function formats the universal record indicator (URI) for connecting to a Mongo database. It is mostly a utility function for formatting the string.
makeDBuri( username = "", password = "", host = "localhost", port = "", protocol = "mongodb" )
makeDBuri( username = "", password = "", host = "localhost", port = "", protocol = "mongodb" )
username |
The name of the database user (login credential), or an empty string if no username is required. |
password |
The name of the database password (login credential), or an empty string if no password is required. |
host |
The name or IP address of the system hosting the database. |
port |
The port to be used for connections. Note that the port for a default configuration of mongo is 27018. This can be left blank to use the default port. |
protocol |
A character scalar giving the protocol to use when connecting, e.g., “mongodb”. |
A character string giving the database URI which can be passed to the
mongo
function to create a database collection
handle.
Note that the password is stored in clear text, so appropriate care should be taken with the result of this function.
Russell Almond
This is an input argument to a number of other classes which use mongo connections.
makeDBuri() makeDBuri(user="admin",password="secret") makeDBuri(user="admin") makeDBuri(host="example.com",port=12345)
makeDBuri() makeDBuri(user="admin",password="secret") makeDBuri(user="admin") makeDBuri(host="example.com",port=12345)
Execute Aggregration Pipeline
mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE ) ## S4 method for signature 'MongoDB' mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE ) ## S4 method for signature 'mongo' mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE )
mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE ) ## S4 method for signature 'MongoDB' mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE ) ## S4 method for signature 'mongo' mdbAggregate( db, pipeline = "{}", options = "{\"allowDiskUse\":true}", handler = NULL, pagesize = 1000, iterate = FALSE )
db |
MongoDB or mongo – The database collection handle. |
pipeline |
character – a json object describing the pipeline. |
options |
character – a json object giving options to the pipeline. (This is missing from
the |
handler |
– undocumented. |
pagesize |
integer – Size of pages |
iterate |
logical – If |
Execute a pipeline using the Mongo aggregation framework. Set iterate = TRUE
to return an iterator
instead of a data frame.
Data frame or iterator with query results.
[mongo] https://www.mongodb.com/docs/manual/reference/command/aggregate/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) stats <- mdbAggregate(irisdb, paste('[{"$group":{"_id":"$Species", "count": {"$sum":1},', '"average_Petal_Length": {"$avg":"$Petal_Length"}', '}}]'), options = '{"allowDiskUse":true}' ) if (!is.null(stats)) { names(stats) <- c("Species", "Count", "Petal Length") } print(stats)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) stats <- mdbAggregate(irisdb, paste('[{"$group":{"_id":"$Species", "count": {"$sum":1},', '"average_Petal_Length": {"$avg":"$Petal_Length"}', '}}]'), options = '{"allowDiskUse":true}' ) if (!is.null(stats)) { names(stats) <- c("Species", "Count", "Petal Length") } print(stats)
Returns FALSE
if the connection to the database is not available, so the CRUD operations (mdbCRUD).
will not be executed.
mdbAvailable(db) ## S4 method for signature 'MongoDB' mdbAvailable(db) ## S4 method for signature 'mongo' mdbAvailable(db)
mdbAvailable(db) ## S4 method for signature 'MongoDB' mdbAvailable(db) ## S4 method for signature 'mongo' mdbAvailable(db)
db |
(or MongoDB mongo) – Reference to collection |
logical value. If false, there is no active connection and CRUD operations will be no-ops.
When using the mongolite::mongo
collection reference
operations are not skipped.
Counts the number of records matching Query.
mdbCount(db, query = "{}") ## S4 method for signature 'MongoDB' mdbCount(db, query = "{}") ## S4 method for signature 'mongo' mdbCount(db, query = "{}")
mdbCount(db, query = "{}") ## S4 method for signature 'MongoDB' mdbCount(db, query = "{}") ## S4 method for signature 'mongo' mdbCount(db, query = "{}")
db |
MongoDB or mongo – Reference to the collection |
query |
character – JSON expression giving the query. See
|
The query
argument is a partial match for the records (in JSON format) which is
essentially a partial match for the object.
integer The number of records found (or NA
if noMongo = TRUE
)
\link[mongolite]{mongo}
, \link{buildJQuery}
https://www.mongodb.com/docs/manual/reference/command/count/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbCount(irisdb) mdbCount(irisdb,'{"Species":"setosa"}') mdbCount(irisdb,buildJQuery(Sepal.Width=c(lt=3),Petal.Width=c(gt=.3,lt=1.8)))
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbCount(irisdb) mdbCount(irisdb,'{"Species":"setosa"}') mdbCount(irisdb,buildJQuery(Sepal.Width=c(lt=3),Petal.Width=c(gt=.3,lt=1.8)))
Disconnects connection to database.
mdbDisconnect(db, gc = TRUE) ## S4 method for signature 'MongoDB' mdbDisconnect(db, gc = TRUE) ## S4 method for signature 'mongo' mdbDisconnect(db, gc = TRUE)
mdbDisconnect(db, gc = TRUE) ## S4 method for signature 'MongoDB' mdbDisconnect(db, gc = TRUE) ## S4 method for signature 'mongo' mdbDisconnect(db, gc = TRUE)
db |
MongoDB or mongo – The database connection to drop. |
gc |
logical – Should the garbage collection be run. |
While this closes the connection, the MongoDB
object retains the
information needed to re-open it. It will be reopened on the next
call.
status message
[mongo]
## Setting noMongo=TRUE, so we don't actually run this. testDB <- MongoDB("test", noMongo=!interactive()) mdbDisconnect(testDB)
## Setting noMongo=TRUE, so we don't actually run this. testDB <- MongoDB("test", noMongo=!interactive()) mdbDisconnect(testDB)
Find the distinct values of a particular field
mdbDistinct(db, key, query = "{}") ## S4 method for signature 'MongoDB' mdbDistinct(db, key, query = "{}") ## S4 method for signature 'mongo' mdbDistinct(db, key, query = "{}")
mdbDistinct(db, key, query = "{}") ## S4 method for signature 'MongoDB' mdbDistinct(db, key, query = "{}") ## S4 method for signature 'mongo' mdbDistinct(db, key, query = "{}")
db |
(or MongoDB mongo) – Reference to database collection |
key |
character – field to extract |
query |
character – JSON expression indicating subcollection.
See |
Finds the unique values of the field specified by key
. If
query
is supplied, then search is restricted to records
satisfying query.
list of values
[mongo] https://www.mongodb.com/docs/manual/reference/command/distinct/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbDistinct(irisdb,"Species")
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbDistinct(irisdb,"Species")
Drops the database collection
mdbDrop(db) ## S4 method for signature 'MongoDB' mdbDrop(db) ## S4 method for signature 'mongo' mdbDrop(db)
mdbDrop(db) ## S4 method for signature 'MongoDB' mdbDrop(db) ## S4 method for signature 'mongo' mdbDrop(db)
db |
(or MongoDB mongo) – Reference to collection to drop |
Dropping the collection and then inserting values is an easy way to reset the collection contents, so is a common idiom.
miniprint object giving status
[mongo] https://www.mongodb.com/docs/manual/reference/command/drop/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris)
Exports/imports data from external JSON or BSON file
mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) ## S4 method for signature 'MongoDB' mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) ## S4 method for signature 'mongo' mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) mdbImport(db, con, bson = FALSE) ## S4 method for signature 'MongoDB' mdbImport(db, con, bson = FALSE) ## S4 method for signature 'mongo' mdbImport(db, con, bson = FALSE)
mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) ## S4 method for signature 'MongoDB' mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) ## S4 method for signature 'mongo' mdbExport( db, con = stdout(), bson = FALSE, query = "{}", fields = "{}", sort = "{\"_id\":1}" ) mdbImport(db, con, bson = FALSE) ## S4 method for signature 'MongoDB' mdbImport(db, con, bson = FALSE) ## S4 method for signature 'mongo' mdbImport(db, con, bson = FALSE)
db |
(or MongoDB mongo) – Database collection of focus |
con |
connetion – a file or other connection for import/export |
bson |
logical – If |
query |
character – JSON expression providing a query
selecting records to export. See |
fields |
character – JSON expression selecting fields of the
objects to be exported. See |
sort |
character – JSON expression indicating field and
direction for sorting exported records. See |
The export
function dumps a collection to a file or other
connection. This can be in either plain text (utf8) JSON
format,
or a binary BSON
format (this is specific to Mongo). The
import
function reverses this process.
On export, the query
, fields
and sort
fields can be used to
control what is exported.
miniprint object giving the status
[mongo] https://www.mongodb.com/docs/manual/reference/command/import/ https://www.mongodb.com/docs/manual/reference/command/export/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbCount(irisdb) outfile <- tempfile(fileext="json") mdbExport(irisdb,file(outfile),sort='{"Petal_Length":-1}') mdbDrop(irisdb) mdbCount(irisdb) mdbImport(irisdb,file(outfile)) mdbCount(irisdb)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbCount(irisdb) outfile <- tempfile(fileext="json") mdbExport(irisdb,file(outfile),sort='{"Petal_Length":-1}') mdbDrop(irisdb) mdbCount(irisdb) mdbImport(irisdb,file(outfile)) mdbCount(irisdb)
Finds records which match the query and returns as data frame
mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 ) ## S4 method for signature 'MongoDB' mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 ) ## S4 method for signature 'mongo' mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 )
mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 ) ## S4 method for signature 'MongoDB' mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 ) ## S4 method for signature 'mongo' mdbFind( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0, handler = NULL, pagesize = 1000 )
db |
(or MongoDB mongo) – the database collection. |
query |
character – A query string in |
fields |
character – A JSON expression describing which
fields to extract from the selected records. The default returns
all fields except for the internal Mongo id field (see |
sort |
character – A JSON field indicating how the record should be sorted. |
skip |
integer – The number of records to skip. |
limit |
integer – The maximum number of records to return. |
handler |
(or NULL function) – Undocumented. |
pagesize |
integer – Used for buffering |
The mdbFind
function takes a collection of records and turns it
into a data.frame
with the columns representing the frame. To
process the raw JSON stream, try \link{mdbIterate}
The query
, fields
and sort
are all JSON expressions. Note
that field names shuld be quoted inside these query strings (the
quotes are optional in the Mongo shell, but not here). I recommend
using single quotes for the outer expression and double quotes
inside the JSON string.
The mongo query is a rather rich language. The simplest version
restricts a field to a specific value. For example
'{"Species":"virginica"}'
would select only virginica irises.
There are a number of different operators which can used to specify
the query, for examples '{"Species":{$ne:"virginica"}}'
and
'{"Species":{$in:["setosa","versicolor"]}}'
both select the other
iris types.
The mongo operators are "$eq" – equals, "$gt" – greater than, "$gte" – greater than or equals, "$lt" – less than, "$lte" – less than or equals, "$ne" – not equal,"$nin" – not in (argument is a list ('[]'),"$in" – in (argument is a list) and "$regex" – a regular expression.
The function \link{buildJQuery}
uses a more R-like syntax and
converts them to JSON. This makes it easier to build a query
inside of R.
The fields JSON expression should be a collection of fields with a
true
or false
(or 0 or 1). Note that the "_id" field is
automatically included unless explicitly excluded. For example:
{"Petal.Length":1, "Petal.Width":1, "Species":1, "_id":0}
will
select the petal length and width field and species field. See
the topic Projection
in the Mongo manual for more details.
This is a short object which gives the name of the field to sort on
and the direction (1 for ascending, -1 for descending). If more
than one sort key is given, the first one is given the highest
priority. The sort keys should be included in the field. For example
{"Petal.Length":1}
sort in ascending order according to petal
length. See the sort
function in the Mongo reference manual.
data.frame giving query results
\link[mongolite]{mongo}
, \link{buildJQuery}
\link{getOneRec}
, \link{getManyRecs}
, \link{mdbIterate}
https://www.mongodb.com/docs/manual/reference/operator/query/
https://www.mongodb.com/docs/manual/reference/command/find/
https://www.mongodb.com/docs/manual/reference/method/db.collection.find/#std-label-find-projection
https://www.mongodb.com/docs/manual/reference/method/cursor.sort/#mongodb-method-cursor.sort
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbFind(irisdb,buildJQuery(Species="setosa"), fields = '{"Petal_Width":1, "Petal_Length":1}', sort = '{"Petal_Width":-1}', limit=10)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbFind(irisdb,buildJQuery(Species="setosa"), fields = '{"Petal_Width":1, "Petal_Length":1}', sort = '{"Petal_Width":-1}', limit=10)
Build/remove an index for the collection.
mdbIndex(db, add = NULL, remove = NULL) ## S4 method for signature 'MongoDB' mdbIndex(db, add = NULL, remove = NULL) ## S4 method for signature 'mongo' mdbIndex(db, add = NULL, remove = NULL)
mdbIndex(db, add = NULL, remove = NULL) ## S4 method for signature 'MongoDB' mdbIndex(db, add = NULL, remove = NULL) ## S4 method for signature 'mongo' mdbIndex(db, add = NULL, remove = NULL)
db |
(or MongoDB mongo) – Collection in question. |
add |
character – JSON object describing fields to index. |
remove |
character – Name of indexes to remove. |
If add
is specified, then a new index is added. If remove
then
the index is removed. If neither is specified, then a data frame
giving the existing indexes is returned.
The syntax of the add
field is similar to the sort
argument of
\link{mdbFind}. The
removefunction uses the
name' from the
returned data.frame.
If sorted queries are going to be frequent, then building indexes will improve performance.
data frame desribing indexes.
[mongo] https://www.mongodb.com/docs/manual/reference/method/db.collection.createIndex/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbIndex(irisdb,add=buildJQuery("Petal_Length"=1)) mdbIndex(irisdb,add='{"Petal_Length":1,"Petal_Width":-1}') indexes <- mdbIndex(irisdb) print(indexes) mdbIndex(irisdb,remove="Petal_Length_1")
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbIndex(irisdb,add=buildJQuery("Petal_Length"=1)) mdbIndex(irisdb,add='{"Petal_Length":1,"Petal_Width":-1}') indexes <- mdbIndex(irisdb) print(indexes) mdbIndex(irisdb,remove="Petal_Length_1")
Get Information about the collection
mdbInfo(db) ## S4 method for signature 'MongoDB' mdbInfo(db) ## S4 method for signature 'mongo' mdbInfo(db)
mdbInfo(db) ## S4 method for signature 'MongoDB' mdbInfo(db) ## S4 method for signature 'mongo' mdbInfo(db)
db |
(or MongoDB mongo) The collection of interest. |
Object of class miniprint
giving information about the collection.
[mongo]
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbInfo(irisdb)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbInfo(irisdb)
Inserts one or more records. If the data
argument is a data.frame
, then
each row becomes a new record.
mdbInsert(db, data, pagesize = 1000, stop_on_error = TRUE, ...) ## S4 method for signature 'MongoDB' mdbInsert(db, data, pagesize = 1000, stop_on_error = TRUE, ...) ## S4 method for signature 'mongo' mdbInsert(db, data, pagesize = 1000, stop_on_error = TRUE, ...)
mdbInsert(db, data, pagesize = 1000, stop_on_error = TRUE, ...) ## S4 method for signature 'MongoDB' mdbInsert(db, data, pagesize = 1000, stop_on_error = TRUE, ...) ## S4 method for signature 'mongo' mdbInsert(db, data, pagesize = 1000, stop_on_error = TRUE, ...)
db |
(or MongoDB mongo) – Collection into which new recrods will be inserted |
data |
(or data.frame named list character) – New data to be inserted. |
pagesize |
integer – size of data stores |
stop_on_error |
logical |
... |
– extra data |
Data frames are converted into mongo documents and then inserted.
Each row is a document, and the fields in the document correspond
to properties. This is perhaps the easiest way to use this
function. mdbInsert
save a data frame in a mongo collection and
\link{mdbFind}
retrieves it.
An alternative is to express the document to be stored as a JSON
string. If the input is a character vector with each element being
a complete JSON document, these will be added to the collection.
The function \link[jsonlite]{serializeJSON}
in the jsonlite
package converts an R object to JSON in a way that will reproduce
the object but is not particularly easy to find or index in the
database. The function \link{jsonlite}{toJSON}
produces a more
readable version, but still has issues (in partuclar, it does not
distinguish between scalar and vector fields). The function
\link{as.json}
provides a mechanism for encoding S4 objects as
JSON expressions.
The function \link{saveRec}
provides a more object-oriented
interface for saving a single S4 object.
The source code for \link[mongolite]{mongo}()$insert()
provides a
mechanism for using lists, but does not describe what the lists
elements should be.
Object of class miniprint
giving status information.
\link[mongolite]{mongo}
, \link[jsonlite]{toJSON}
,
\link[jsonlite]{serializeJSON}
, \link{as.json}
, \link{saveRec}
https://www.mongodb.com/docs/manual/reference/method/db.collection.insert/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) testdb <- MongoDB("test",noMongo=!interactive()) mdbDrop(testdb) mdbInsert(testdb,'{"Student":"Fred", "Scores":[83, 87, 91, 79], "Grade":"B"}')
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) testdb <- MongoDB("test",noMongo=!interactive()) mdbDrop(testdb) mdbInsert(testdb,'{"Student":"Fred", "Scores":[83, 87, 91, 79], "Grade":"B"}')
Returns documents as lists (jlists) from the database.
mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'MongoDB' mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'mongo' mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) mdbFindL( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'JSONDB' mdbFindL( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 )
mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'MongoDB' mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'mongo' mdbIterate( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) mdbFindL( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 ) ## S4 method for signature 'JSONDB' mdbFindL( db, query = "{}", fields = "{\"_id\":0}", sort = "{}", skip = 0, limit = 0 )
db |
(or MongoDB mongo) – the database collection. |
query |
character – A query string in |
fields |
character – A JSON expression describing which
fields to extract from the selected records. The default returns
all fields except for the internal Mongo id field (see |
sort |
character – A JSON field indicating how the record should be sorted. |
skip |
integer – The number of records to skip. |
limit |
integer – The maximum number of records to return. |
Unlike the \link{mdbFind}
operation, which converts to the query
output to a data frame, mdbIterate
produces an iterator, which
will cycle through the query results, which are returned as \link{jlist}
objects.
An iterator with the values.
The iterator object returned from this function has two methods:
$one()
– Returns the next object, or NULL
if there is none.
$batch(n)
– Returns the next n
objects.
[mongo]
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) iter <- mdbIterate(irisdb,limit=10) if (!is.null(iter)) { iter$one() iter$batch(3) ## Note extra parens. while (!is.null((item <- iter$one()))) { print(sprintf("A %s iris with petal length %f", item$Species,item$Petal_Length)) } }
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) iter <- mdbIterate(irisdb,limit=10) if (!is.null(iter)) { iter$one() iter$batch(3) ## Note extra parens. while (!is.null((item <- iter$one()))) { print(sprintf("A %s iris with petal length %f", item$Species,item$Petal_Length)) } }
Runs a map-reduce operation in the database side. The map
and
reduce
functions are expressed as javascript methods.
mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0) ## S4 method for signature 'MongoDB' mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0) ## S4 method for signature 'mongo' mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0)
mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0) ## S4 method for signature 'MongoDB' mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0) ## S4 method for signature 'mongo' mdbMapreduce(db, map, reduce, query = "{}", sort = "{}", limit = 0)
db |
(or MongoDB mong) – The collection to operate on. |
map |
character – A javascript function to apply to each document. |
reduce |
character – A javascript function to summarize the result |
query |
character – A JSON query to slect part of the
collection. See |
sort |
charcter – JSON object giving sorting order for result set (see |
limit |
integer – maximum number of records to process |
The Mongo database manual suggests that aggregation piplelines have better performance than map-reduce. Starting in Mongo 5.0 map-reduce is depricated.
data frame with results
\link[mongolite]{mongo}
\link{mdbAggregate}
https://www.mongodb.com/docs/manual/core/map-reduce/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) histdata <- mdbMapreduce(irisdb, map= "function (){emit(Math.floor(this.Petal_Length*5)/5, 1)}", reduce="function (id,counts){return Array.sum(counts)}" ) if (any(!is.na(histdata))) { names(histdata) <- c("Petal.length","count") } head(histdata) histdata1 <- mdbAggregate(irisdb, '[{"$set": { "ptlround": { "$divide":[ {"$floor": { "$multiply": ["$Petal_Length", 5] }}, 5]}}}, {"$group": { "_id": "$ptlround", "count": {"$sum":1} }} ]' ) if (!is.null(histdata1)) { names(histdata1) <- c("Petal.length","count") } head(histdata1)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) histdata <- mdbMapreduce(irisdb, map= "function (){emit(Math.floor(this.Petal_Length*5)/5, 1)}", reduce="function (id,counts){return Array.sum(counts)}" ) if (any(!is.na(histdata))) { names(histdata) <- c("Petal.length","count") } head(histdata) histdata1 <- mdbAggregate(irisdb, '[{"$set": { "ptlround": { "$divide":[ {"$floor": { "$multiply": ["$Petal_Length", 5] }}, 5]}}}, {"$group": { "_id": "$ptlround", "count": {"$sum":1} }} ]' ) if (!is.null(histdata1)) { names(histdata1) <- c("Petal.length","count") } head(histdata1)
Query selects a subset of the collection to remove. Note for
removing everything, \link{mdbDrop}
is faster.
mdbRemove(db, query = "{}", just_one = FALSE) ## S4 method for signature 'MongoDB' mdbRemove(db, query = "{}", just_one = FALSE) ## S4 method for signature 'mongo' mdbRemove(db, query = "{}", just_one = FALSE)
mdbRemove(db, query = "{}", just_one = FALSE) ## S4 method for signature 'MongoDB' mdbRemove(db, query = "{}", just_one = FALSE) ## S4 method for signature 'mongo' mdbRemove(db, query = "{}", just_one = FALSE)
db |
(or MongoDB mongo) – Collection affected. |
query |
character – Mongo query expressed as JSON object.
See |
just_one |
logical – If true, only the first matching record is removed. |
miniprint Information about the results.
\link[mongolite]{mongo}
, \link{mdbFind}
,
\link{mdbDrop}
https://www.mongodb.com/docs/manual/reference/command/delete/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbCount(irisdb) mdbRemove(irisdb,'{"Species":"setosa"}') mdbCount(irisdb)
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbDrop(irisdb) mdbInsert(irisdb,iris) mdbCount(irisdb) mdbRemove(irisdb,'{"Species":"setosa"}') mdbCount(irisdb)
Using the name
argument simply renames the collection. Using the
db
argument copies the collection to a new database.
mdbRename(mdb, name, db = NULL) ## S4 method for signature 'MongoDB' mdbRename(mdb, name, db = NULL) ## S4 method for signature 'mongo' mdbRename(mdb, name, db = NULL)
mdbRename(mdb, name, db = NULL) ## S4 method for signature 'MongoDB' mdbRename(mdb, name, db = NULL) ## S4 method for signature 'mongo' mdbRename(mdb, name, db = NULL)
mdb |
(or MongoDB mongo) – Reference to collection to move |
name |
character – new name for collection |
db |
character – new database for collection. |
miniprint Status Message
\link[mongolite]{mongo}
https://www.mongodb.com/docs/manual/reference/command/renameCollection/
mdbDrop(MongoDB("FisherIrises",noMongo=!interactive())) irisdb <- MongoDB("iris",noMongo=!interactive()) showCollections(irisdb) mdbRename(irisdb,"FisherIrises") showCollections(irisdb)
mdbDrop(MongoDB("FisherIrises",noMongo=!interactive())) irisdb <- MongoDB("iris",noMongo=!interactive()) showCollections(irisdb) mdbRename(irisdb,"FisherIrises") showCollections(irisdb)
Replace a document with a new document
mdbReplace(db, query, update = "{}", upsert = FALSE) ## S4 method for signature 'MongoDB' mdbReplace(db, query, update = "{}", upsert = FALSE) ## S4 method for signature 'mongo' mdbReplace(db, query, update = "{}", upsert = FALSE) mdbUpsert(db, query, update = "{}", upsert = TRUE) ## S4 method for signature 'JSONDB' mdbUpsert(db, query, update = "{}", upsert = TRUE)
mdbReplace(db, query, update = "{}", upsert = FALSE) ## S4 method for signature 'MongoDB' mdbReplace(db, query, update = "{}", upsert = FALSE) ## S4 method for signature 'mongo' mdbReplace(db, query, update = "{}", upsert = FALSE) mdbUpsert(db, query, update = "{}", upsert = TRUE) ## S4 method for signature 'JSONDB' mdbUpsert(db, query, update = "{}", upsert = TRUE)
db |
(or MongoDB mongo) Reference to the collection. |
query |
character Query as JSON document, see |
update |
character Replacement document in JSON format. |
upsert |
logical If |
In this method, the entire selected document (including the _id
field is replaced. In the \link{update}
method, the existing
record is modified.
The query
argument should return 0 or 1 arguments. If it
returns 0 and upsert
is TRUE
, then the document is inserted.
The function mbdUpsert(...)
is an alias for mdbReplace(..., upsert=TRUE)
.
miniprint with results.
\link[mongolite]{mongo}
, \link{mdbFind}
, \link{mdbUpdate}
https://www.mongodb.com/docs/manual/reference/method/db.collection.replaceOne/
testdb <- MongoDB(noMongo=!interactive()) mdbDrop(testdb) mdbInsert(testdb,'{"name":"Fred", "gender":"M"}') mdbFind(testdb,fields='{}') mdbReplace(testdb,'{"name":"Fred"}', '{"name":"Phred", "gender":"F"}') mdbFind(testdb,fields='{}')
testdb <- MongoDB(noMongo=!interactive()) mdbDrop(testdb) mdbInsert(testdb,'{"name":"Fred", "gender":"M"}') mdbFind(testdb,fields='{}') mdbReplace(testdb,'{"name":"Fred"}', '{"name":"Phred", "gender":"F"}') mdbFind(testdb,fields='{}')
Runs a Mongo command on the collection
mdbRun(db, command = "{\"ping\":1}", simplify = TRUE) ## S4 method for signature 'MongoDB' mdbRun(db, command = "{\"ping\":1}", simplify = TRUE) ## S4 method for signature 'mongo' mdbRun(db, command = "{\"ping\":1}", simplify = TRUE)
mdbRun(db, command = "{\"ping\":1}", simplify = TRUE) ## S4 method for signature 'MongoDB' mdbRun(db, command = "{\"ping\":1}", simplify = TRUE) ## S4 method for signature 'mongo' mdbRun(db, command = "{\"ping\":1}", simplify = TRUE)
db |
(or MongoDB mongo) Reference to the collection. |
command |
character JSON document providing the command. |
simplify |
logical If true, the output structure is simplified. |
A command is a JSON document. See the Mongo reference manual for the supported commands (these will vary quite a lot by the version of the database). Note that some commands only run against the "admin" database.
list containing returned value.
\link[mongolite]{mongo}
https://www.mongodb.com/docs/manual/reference/command/
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbRun(irisdb,'{"collStats":"iris"}')
irisdb <- MongoDB("iris",noMongo=!interactive()) mdbRun(irisdb,'{"collStats":"iris"}')
The query
field identifies a number of documents. The update
is a set of instructions for changing the documents. The
\link{mdbReplace}
function replaces the document instead of
modifying it.
mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE ) ## S4 method for signature 'MongoDB' mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE ) ## S4 method for signature 'mongo' mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE )
mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE ) ## S4 method for signature 'MongoDB' mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE ) ## S4 method for signature 'mongo' mdbUpdate( db, query, update = "{\"$set\":{}}", filters = NULL, upsert = FALSE, multiple = FALSE )
db |
(or MongoDB mongo) – The collection to modify. |
query |
character – A JSON document identifying the document(s) to modify. |
update |
character – A JSON document identifying the changes to make to a document. |
filters |
character – A JSON document which controls which documents in the collection gets updated. (See the "Mongolite User Manual"). |
upsert |
logical – If true and the query returns no results, then insert the document instead. |
multiple |
logical – If true, all documents matching |
The rules here match those for \link{mdbFind}
.
This is a special document which describes how to modify the
document. There are a number of commands described in the Mongo
documentation, of which the two most useful are $set
and
$unset
.
The $set
command takes as argument a JSON object giving field
value pairs. If the field exists it value will be changed, if it
doesn't exist a new field will be created. For example '{"$set": {"processed":false}}'
will set the processed
field to false,
additing it if necessary.
The $unset
command removes a field from a document. For example,
'{"$unset":{"processed":0}}'
removes the process field. The
value after the field name is ignored.
For multiple complex changes, consider using 'mdbAggregate for more complex changes.
A list with the returned object.
\link[mongolite]{mongo}
, \link{mdbReplace}
\link{mdbFind}
, \link{mdbAggregate}
mdb <- MongoDB("testthis","test","mongodb://localhost",noMongo=!interactive()) mdbDrop(mdb) mdbInsert(mdb,c('{"name":"Fred", "gender":"M"}', '{"name":"George", "gender":"M"}')) mdbFind(mdb) mdbUpdate(mdb,'{"name":"Fred"}', '{"$set":{"gender":"F"}}') mdbFind(mdb)
mdb <- MongoDB("testthis","test","mongodb://localhost",noMongo=!interactive()) mdbDrop(mdb) mdbInsert(mdb,c('{"name":"Fred", "gender":"M"}', '{"name":"George", "gender":"M"}')) mdbFind(mdb) mdbUpdate(mdb,'{"name":"Fred"}', '{"$set":{"gender":"F"}}') mdbFind(mdb)
MongoDB – Reference class wrapping a connection to a Mongo database collection.
MongoDB( collection = "test", db = "test", url = "mongodb://localhost", verbose = FALSE, noMongo = FALSE, options = mongolite::ssl_options() )
MongoDB( collection = "test", db = "test", url = "mongodb://localhost", verbose = FALSE, noMongo = FALSE, options = mongolite::ssl_options() )
collection |
character – name of collection |
db |
character – name of database |
url |
character – URI for mongo connection (see |
verbose |
logical – Should operate in verbose mode. |
noMongo |
logical – If true, then no connection to Mongo database will be made, and CRUD operations will become no-ops. |
options |
– SSL options for connections, see |
Including a mongo object in an Reference class presents a potential race condition.
The prototype class is built at package load time, however, calling the \link[mongolite]{mongo}
may not work
at this time. The MongoDB
class works around this by capturing the arguments to the mongo
call, and then
creating the actual database connection when the database is first accessed. The database should always be accessed
through the $db()
method which builds the database if needed.
An object of class MongoDB
mongoObj
ANY – This is the actual
\link[mongolite]{mongo}
object or NULL
if it has
not been initialized yet.
uri
character – URI for the mongo connection.
dbname
character – The name of the mongo database.
colname
character – The name of the mongo collection
noMongo
logical – If TRUE
, then the
This allows a class which contains a reference to a
Mongo database to ignore the database calls when
there is no database to connect to.
verbose
logical – This field is passed on
to the \link[mongolite]{mongo}
call.
options
ANY – This field is passed on to
the \link[mongolite]{mongo}
call. It is used to
store additional SSL connection information, see
\link[mongolite]{ssl_options}
.
$initialize(collection, db, url, verbose, options, ...)
– Constructor.
$db()
– Returns the the actual database connection
(\link[mongolite]{mongo}
object), or NULL
if uri==""
or
noMongo==TRUE
. If the actual call to 'mongo
has not been made, this method will create the connection;
otherwise, the cached connection is returned.
$available()
– Returns false if no database is present (i.e.,
noMongo
is TRUE
. Used to suppress actual mongo calls when
database is not available.
$resetDB()
– Resets the mongoObj
field to force a
reconnection to Mongo the next time $db()
is called. This is
probably useful to call when restoring an R session.
$toString()
– Returns a string represenation of an object.
The S4 generic functions correspond to the normal CRUD
(Create, Read, Update and Delete) methods. Particularly:
\link{mdbAggregate}
, \link{mdbCount}
, \link{mdbDisconnect}
, \link{mdbDrop}
,
\link{mdbExport}
, \link{mdbFind}
, \link{mdbImport}
, \link{mdbIndex}
,
\link{mdbInsert}
, \link{mdbIterate}
, \link{mdbMapreduce}
,
\link{mdbRemove}
, \link{mdbRename}
, \link{mdbReplace}
,
\link{mdbRun}
, \link{mdbUpdate}
, \link{showCollections}
and
\link{showDatabases}
.
Many of the examples use MongoDB(...,noMongo=!interactive())
.
This means the dummy mechanism will be used during package checking
(where Mongo may or may not be available in the development
environment), but running the examples from the help files will
make the connections (and will generate an error if Mongo is not
installed).
[mongo]
More extensive documentation on most of the mdbXXX
functions can be found at the Mongo API documentation web site.
https://www.mongodb.com/docs/manual/reference/command/
mdp <- MongoDB("test","test","mongodb://localhost") ## Not run: # This will generate an error if mongo doesn't exist. mdbCount(mdp,'{}') ## End(Not run) nullmdp <- MongoDB(noMongo=TRUE) mdbCount(nullmdp) # This will return `NA`.
mdp <- MongoDB("test","test","mongodb://localhost") ## Not run: # This will generate an error if mongo doesn't exist. mdbCount(mdp,'{}') ## End(Not run) nullmdp <- MongoDB(noMongo=TRUE) mdbCount(nullmdp) # This will return `NA`.
This is a lightweight class meant to be extended.
It contains a
single field for a Mongo identifier, which can be accessed using
the m_id()
method. It is meant to store something that is a
record in a Mongo collection, where _id
is the Mongo identifier.
MongoRec(..., m_id = NA_character_)
MongoRec(..., m_id = NA_character_)
... |
Other arguments (pass through for initialization method). |
m_id |
character Mongo identifier. Use |
The constructor MongoRec
returns an object of class MongoRec
.
The m_id
method returns a character scalar (with name oid
) which contains the mongo identifer.
MongoRec()
: Constructor for MongoRec
_id
(character) The Mongo ID, NA_character_
if not saved.
Objects can be created by calls to the MongoRec()
function.
Russell G. Almond
as.json()
buildObject()
, saveRec()
, getOneRec()
showClass("MongoRec")
showClass("MongoRec")
The parse.json
function uses the
fromJSON
function to turn the JSON into a list, which
is processed using the function parse.jlist
to massage the elements, and then passes it to the new
function
to create a new object of type class
.
parse.jlist(class, rec) ## S4 method for signature 'ANY,list' parse.jlist(class, rec) buildObject(rec, class = decodeClass(rec$class)) parse.json(encoded, builder = buildObject) ## S4 method for signature 'MongoRec,list' parse.jlist(class, rec)
parse.jlist(class, rec) ## S4 method for signature 'ANY,list' parse.jlist(class, rec) buildObject(rec, class = decodeClass(rec$class)) parse.json(encoded, builder = buildObject) ## S4 method for signature 'MongoRec,list' parse.jlist(class, rec)
class |
– A character string defining the class of the output object.
If the list has an element named |
rec |
– A list which is the output of |
encoded |
– a character scalar giving the raw JSON object. |
builder |
– A function which will construct an object from a list of fields values. |
The parse.jlist
function is a helper function designed to do any massaging
necessary to unencode the slot values before the object is produced. The function
ununboxer
undoes the effect of unboxer
, and the
function unparseData
undoes the effect of parseData
.
An S4 object of type class
parse.jlist()
: This is the inner function for processing
the slots prior to object creation. Generally, this is the method
that needs to be specialized. See the vignette("JSON for S4 Objects")
.
parse.jlist(class = ANY, rec = list)
: Base case for callNextMethod; just returns
the slot list.
buildObject()
: This method takes the jlist, cleans it with an appropriate
parse.jlist
method and then tries to generate an object based on the class.
parse.jlist(class = MongoRec, rec = list)
: Makes sure the _id
field corresponds to
conventions, and inserts NA
if it is missing.
## Not run: vignette("JSON for S4 Objects") ## End(Not run)
## Not run: vignette("JSON for S4 Objects") ## End(Not run)
parseData
function is a helper function for parse.jlist()
methods, and unparseData
for as.jlist()
, which represents complex objects as JSON.Prepare R data for storage or restore R data from jlist
#'
The parseData
function is a helper function for parse.jlist()
methods, and unparseData
for as.jlist()
, which represents complex objects as JSON.
parseData(messData) unparseData(data, serialize = TRUE)
parseData(messData) unparseData(data, serialize = TRUE)
messData |
(or character jlist) |
data |
ANY the data to be saved. |
serialize |
logical if Tru |
There are three strategies for saving/restoring an R object a JSON.
Use the \link[jsonlite]{serializeJSON}
and \link[jsonlite]{unserializeJSON}
method.
This will faithfully reproduce the object, but it will be difficult to manipulate the object
outside of R.
For an S4 object write a as.jlist()
and parse.jlist()
method.
For a S3 object or just a list of arbitrary objects, write out the object using
\link[jsonlite]{toJSON}
and fix up the types of the components when the object is read back in.
When unparseData(...,serialize=TRUE)
is called, then parseData
and unparseData
take the first approache.
Otherwise, it takes the third approach. In particular, \link[jsonlite]{fromJSON}
turns
a vector which contains all elements of the same type
(currently only "logical", "integer", "numeric" and "character")
it turns the list into a vector of the corresponding mode.
parseData
returns the parsed object. unparseData
returns a jlist or character scalar
which can be saved.
dat <- list(chars=letters[1:3], nums=c(-3.3, 4.7), ints=1L:3L, logic=c(TRUE,FALSE)) j1 <- jsonlite::toJSON(unparseData(dat)) j2 <- unparseData(dat,serialize=TRUE) jsonlite::fromJSON(j1) parseData(jsonlite::fromJSON(j1)) parseData(jsonlite::fromJSON(j2))
dat <- list(chars=letters[1:3], nums=c(-3.3, 4.7), ints=1L:3L, logic=c(TRUE,FALSE)) j1 <- jsonlite::toJSON(unparseData(dat)) j2 <- unparseData(dat,serialize=TRUE) jsonlite::fromJSON(j1) parseData(jsonlite::fromJSON(j1)) parseData(jsonlite::fromJSON(j2))
Converting a date to Mongo-flavored JSON produces
a numeric value (number of second seconds since Jan 1, 1970)
labeled with $date
. This function takes the output of
\link[jsonlite]{fromJSON}
and converts it back to POSIX format.
parsePOSIX(x)
parsePOSIX(x)
x |
– Either a list of the form |
If the date has been marked as scalar (using the \link{unboxer}
or
\link[jsonlite]{unbox}
, this function will strip the scalar
flag.
the contents of x
as a POSIXct
object.
dt <- Sys.time() dtj <- jsonlite::toJSON(unboxer(dt)) parsePOSIX(jsonlite::fromJSON(dtj,FALSE))
dt <- Sys.time() dtj <- jsonlite::toJSON(unboxer(dt)) parsePOSIX(jsonlite::fromJSON(dtj,FALSE))
Simple parser works with data which is mostly primitive R types (numeric
, integer
, logical
,
character
).
parseSimpleData(messData)
parseSimpleData(messData)
messData |
list output from |
The \link[jsonlite]{fromJSON}
method does not distinguish between arrays type character,
logical, integer or numeric. This function finds lists of a single atomic type and
replaces them with the corresponding vector
.
list, simplified.
parseSimpleData(list(chars=list("a","b","c"),nums=list(2.3,3.4,4.5), ints=list(1,2,3), logic=list(TRUE,FALSE)))
parseSimpleData(list(chars=list("a","b","c"),nums=list(2.3,3.4,4.5), ints=list(1,2,3), logic=list(TRUE,FALSE)))
This function saves an S4 object as a record in a Mongo database. It uses
as.json
to covert the object to a JSON string.
saveRec(col, rec, serialize = TRUE)
saveRec(col, rec, serialize = TRUE)
col |
(or MongoDB mongo NULL) A mongo collection reference. If |
rec |
The message (object) to be saved. |
serialize |
A logical flag. If true,
|
Returns the message argument, which may be modified by setting the
"_id"
field if this is the first time saving the object.
Russell Almond
as.json
, MongoRec
,
buildObject
, getOneRec
,
MongoDB
## Not run: load_Events() # Uses the sample Event class. m1 <- new("Event",uid="Fred",mess="Task Done", timestamp=Sys.time(), data=list("Selection"="B")) m2 <- new("Event",uid="Fred",mess="New Obs",timestamp=Sys.time(), data=list("isCorrect"=TRUE,"Selection"="B")) m3 <- new("Event",uid="Fred","New Stats", details=list("score"=1,"theta"=0.12345,"noitems"=1)) testcol <- MongoDB("Messages",noMongo=!interactive()) ## Save them back to capture the ID. m1 <- saveRec(testcol,m1) m2 <- saveRec(testcol,m2) m3 <- saveRec(testcol,m3) ## End(Not run)
## Not run: load_Events() # Uses the sample Event class. m1 <- new("Event",uid="Fred",mess="Task Done", timestamp=Sys.time(), data=list("Selection"="B")) m2 <- new("Event",uid="Fred",mess="New Obs",timestamp=Sys.time(), data=list("isCorrect"=TRUE,"Selection"="B")) m3 <- new("Event",uid="Fred","New Stats", details=list("score"=1,"theta"=0.12345,"noitems"=1)) testcol <- MongoDB("Messages",noMongo=!interactive()) ## Save them back to capture the ID. m1 <- saveRec(testcol,m1) m2 <- saveRec(testcol,m2) m3 <- saveRec(testcol,m3) ## End(Not run)
Shows collections in the current database.
showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'mongo' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'MongoDB' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'NULL' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() )
showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'mongo' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'MongoDB' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'NULL' showCollections( db = NULL, dbname = "test", uri = "mongodb://localhost", options = mongolite::ssl_options() )
db |
(or MongoDB mongo NULL) – Connection to target database.
If |
dbname |
character – name for new collection |
uri |
character – URI for database connections. |
options |
list – SSL options for an SSL connection |
Shows all of the collections which are in the referenced database.
If the db
argument is a MongoDB
or mongolite::mongo
object,
the current database is used. If db
is NULL
, then a new
connection is created with the information.
character vector of database names
[mongo]
irisdb <- MongoDB("iris",noMongo=!interactive()) showCollections(irisdb)
irisdb <- MongoDB("iris",noMongo=!interactive()) showCollections(irisdb)
Lists Databases
showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'MongoDB' showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'NULL' showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() )
showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'MongoDB' showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() ) ## S4 method for signature 'NULL' showDatabases( db = NULL, uri = "mongodb://localhost", options = mongolite::ssl_options() )
db |
(or MongoDB NULL) – Database reference. (Note:
|
uri |
character – URI for database connections. |
options |
list – SSL options for an SSL connection |
This function lists the names of the databases which are accessible for the current user.
This function needs to make a new connection to the admin
database. If a MongoDB object is supplied, then the uri
and
options
are taken from it. If the db
argument is NULL, a new
connection is made.
Note that there is currently no documented way of retrieving the
url
and ssl_options
from a mongolite::mongo
object.
a data frame containing the names and sizes of the databases
\link[mongolite]{mongo}
, \link{mdbRun}
irisdb <- MongoDB("iris",noMongo=!interactive()) showDatabases(irisdb)
irisdb <- MongoDB("iris",noMongo=!interactive()) showDatabases(irisdb)
The function toJSON
coverts vectors (which all R
objects are) to vectors in the JSON code. The function
jsonlite::unbox
protects the object from this
behavior, which makes the fields eaiser to search and protects against loss
of name attributes. The function unboxer
extents unbox
to
recursively unbox lists (which preserves names). The function
ununbox
removes the unboxing flag and is mainly used for testing
parser code.
unboxer(x) ununboxer(x)
unboxer(x) ununboxer(x)
x |
Object to be boxed/unboxed. |
The jsonlite::unbox
function does not necessarily
preserve the name attributes of elements of the list. In other words the
sequence as.jlist
-> toJSON
->
fromJSON
-> buildObject
might not be
the identity.
The solution is to recursively apply unbox
to the
elements of the list. The function unboxer
can be thought of as a
recursive version of unbox
which handles the entire tree struction.
If x
is not a list, then unboxer
and unbox
are
equivalent.
The typical use of this function is defining methods for the
as.jlist
function. This gives the implementer fine control of
which attributes of a class should be scalars and vectors.
The function ununboxer
clears the unboxing flag. Its main purpose is
to be able to test various parsers.
The function unboxer
returns the object with the added class
scalar
, which is the jsonlite
marker for a scalar.
The function ununboxer
returns the object without the scalar
class marker.
ununboxer()
: Undoes the effect of unboxer (in particular,
removes the scalar mark).
Dependence on jsonlite implementation:
These functions currently rely on some internal mechanisms of the jsonline
pacakge. In particular, ununbox
relies on the
“scalar” class mechanism.
There is a bug in the way that POSIXt
classes are
handled, unboxer
fixes that problem.
Russell Almond
unbox
, toJSON
,
as.jlist
, buildObject
## Not run: load_examples() ## Example uses event class. ## as.jlist method shows typical use of unboxer. getMethod("as.jlist",c("Event","list")) ## Use ununboxer to test as.jlist/buildObject pair. m4 <- Event("Phred","New Stats", data=list("agents"=c("ramp","ramp","lever"))) m4jl <- as.jlist(m4,attributes(m4)) m4a <- buildObject(ununboxer(m4jl)) testthat::expect_equal(m4a,m4) ## End(Not run)
## Not run: load_examples() ## Example uses event class. ## as.jlist method shows typical use of unboxer. getMethod("as.jlist",c("Event","list")) ## Use ununboxer to test as.jlist/buildObject pair. m4 <- Event("Phred","New Stats", data=list("agents"=c("ramp","ramp","lever"))) m4jl <- as.jlist(m4,attributes(m4)) m4a <- buildObject(ununboxer(m4jl)) testthat::expect_equal(m4a,m4) ## End(Not run)