
Package: Proc4 (via r-universe)
June 11, 2024

Version 0.8-5

Date 2023/06/23

Title Four Process Assessment Database and Dispatcher

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), methods,

Imports futile.logger, mongo, jsonlite

Suggests utils, mongolite, knitr, rmarkdown, tidyr, CPTtools, rlang,
bookdown, devtools, withr, testthat (>= 3.0.0), Peanut

Description Utilities for working with messages in the four four
process architecture as json objects.

Collate ErrorHandling.R Message.R MessageQueue.R Listeners.R
CaptureListener.R InjectionListener.R TableListener.R
UpdateListener.R UpsertListener.R

License Artistic-2.0

URL https://pluto.coe.fsu.edu/Proc4

VignetteBuilder knitr

Support c('Bill & Melinda Gates Foundation grant ``Games as
Learning/Assessment: Stealth Assessment'' (#0PP1035331, Val
Shute, PI)', 'National Science Foundation grant ``DIP:
Game-based Assessment and Support of STEM-related Competencies''
(#1628937, Val Shute, PI)', 'National Science Foundation grant
``Mathematical Learning via Architectual Design and Modeling
Using E-Rebuild.'' (\#1720533, Fengfeng Ke, PI)', 'Institute of
Educational Statistics Grant: ``Exploring adaptive cognitive and
affective learning support for next-generation STEM learning
games.'' (#R305A170376-20, Val Shute and Russell Almond, PIs')

Config/testthat/edition 3

Repository https://ralmond.r-universe.dev

RemoteUrl https://github.com/ralmond/Proc4

RemoteRef HEAD

RemoteSha b45286c302d5e2e795c41387d1c85ccabcbec0a2

1

https://pluto.coe.fsu.edu/Proc4

2 Proc4-package

Contents

Proc4-package . 2
buildListener . 7
buildListenerSet . 9
buildMessage . 11
CaptureListener-class . 13
cleanMessageQueue . 14
fetchNextMessage . 16
generateListenerExports . 17
importMessages . 20
InjectionListener-class . 21
Listener . 23
ListenerConstructors . 25
listenerDataTable . 28
ListenerSet-class . 29
ListQueue-class . 31
markAsProcessed . 33
MessageQueue-class . 35
mongoAppender-class . 37
MongoQueue-class . 38
notifyListeners . 39
P4Message . 40
P4Message-class . 43
registerOutput . 45
resetListeners . 46
resetProcessedMessages . 48
serializeData . 50
TableListener-class . 50
UpdateListener-class . 53
UpsertListener-class . 55
withFlogging . 57

Index 60

Proc4-package Four Process Assessment Database and Dispatcher

Description

Utilities for working with messages in the four four process architecture as json objects.

Proc4-package 3

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

This package exists to supply core functionality to other processes implementing processes in the
four process architecture (Almond, Steinberg and Mislevy, 2002). In particular, it contains low
level code dealing with implementing message queues in a document database (mongo) and read-
ing/writing messages from JSON.

There are five major features of this package documented below:

1. The P4Message object and the protocol for converting messages to JSON and saving them in
the mongo database.

2. A withFlogging function which wraps the flog.logger protocol.

3. A number of Listener objects which implement an observer protocol for messages.

4. The config directory contains a number of javascript files for building database schemas and
indexes.

5. The dongle directory contains a number of PHP scripts for exposing the database via a web
server.

Earlier verisons included a number of tools which wrap funcions in the mongolite and jsonlite
packages. In particular, this included the as.json, parse.json, and buildObject generic func-
tions to manage the conversion from S4 object to JSON and back, the saveRec, getOneRec, and
getManyRecs methods for saving and restoring objects from a database, and the buildJQuery for
building Mongo queries from R-like syntax. These have been moved to the mongo package.

P4 Messages

The extended four process architecture defines a message object (P4Message) with the following
fields:

_id: Used for internal database ID.

app: Object of class "character" which specifies the application in which the messages exit.

uid: Object of class "character" which identifies the user (student).

context: Object of class "character" which identifies the context, task, or item.

sender: Object of class "character" which identifies the sender. This is usually one of "Pre-
sentation Process", "Evidence Identification Process", "Evidence Accumulation Process", or
"Activity Selection Process".

mess: Object of class "character" a general title for the message context.

timestamp: Object of class "POSIXt" which gives the time at which the message was generated.

data: Object of class "list" which contains the data to be transmitted with the message.

processed: A logical value: true if the message has been processed, and false if the message is
still in queue to be processed. This field is set with markAsProcessed.

4 Proc4-package

pError: If a error occurs while processing this event, information about the error can be stored
here, either as an R object, or as an R object of class error (or any class). This field is accessed
with processingError and set with markAsError.

Other classes can extend this message protocol by adding additional fields, but the header fields of
the message object allow it to be routed.

In particular, the processed field allows a database collection of messages to be used as queue.
Simply search for unprocessed message and begin processing them oldest first, using markAsProcessed
to mark the complete process and markAsError to mark errors.

The mongo::as.json and mongo::parse.json functions build JSON representations of S classes.
In general, this process needs explicit instructions on how to code/decode the fields of the ob-
ject. Methods of the inner mongo::as.jlist and mongo::parse.jlist provide this function-
ality. Note that classes which extend P4Message class will need to use these methods. The
cleanMessageJlist does the common processing for the P4Message parent class. Finally, buildMessage
is a more specific version of the buildObject generic builder.

The functions saveRec, getOneRec and getManyRecs facilitate saving and loading message objects
from the database. The function buildJQuery gives R-like syntactic sugar to building mongo
(JSON) queries.

Logging

The logging system for the Proc4 processes is mostly just the flog.logger protocol. Aside from
importing the futile.logger package, Proc4 adds the function withFlogging executes a series
of statements in an environment in which the error messages will be logged, and at higher logging
levels, stack traces for errors and warnings are given. The intention is that most message handling
functions will be wrapped in withFlogging, so that information about the message causing the
error/warning will be available for debugging.

The package also supplies a mongoAppender class, which provides a way of logging messages to a
database.

Listeners

The Proc4 package implements an observer protocol called Listener. A listener is an abstract class
which implements the receiveMessage function. The argument of this function is a P4Message
object, which the listener then does something with. (In most of the implemented examples, this
is to save it in a database.) Note that listeners should also define a isListener method to indicate
that it is a listener.

Four listeners are currently implemented (see Listener or the individal listener classes):

CaptureListener Creates an object of class CaptureListener which stores the messages in a
list.

InjectionListener Creates an object of class InjectionListener which inserts the message
into the designated database.

UpdateListener Creates an object of class UpdateListener which updates the designated field.

UpsertListener Creates an object of class UpsertListener which insert or replaces the message
in the designated collection.

Proc4-package 5

TableListener Creates an object of class TableListener which adds details from message to
rows of a data frame.

The RefListener is an abstract class which provides methods for the other classes (in particular,
promoting the class-based methods to true S4 methods. These include isListener(), listenerName,
listeningFor, receiveMessage, and clearMessage. Note that the default methods for the lat-
ter two functions rely on internal $receiveMessage() and $reset() class-based methods, which
must be implemented in the subclasses.

The ListenerSet class is a mixin to associate a collection of listeners with an object (the EIEngine
and BNEngine classes use this). The generic function notifyListeners can be called. This logs
information about the message (see logging system above), save a copy of the message in a “Mes-
sages” database, and calls the receiveMessage method on all of the listener objects in its collection.

Configuration Files

Using the mongo database, both security (user IDs and passwords) is optional. Running mongo
without security turned on is probably okay as long as the installation is (a) behing a firewall, and
(b) the firewall is configured to not allow connections on the mongo port except from localhost.
However, other users may want to turn on security.

The recommended security setup is to create four users, “EIP”, “EAP”, “ASP”, and “C4” for the
four processes and to assign a password to each. The URI’s of the database connections then need to
be modified to include the username and passwords. Each process would have an ini.R file which
contains its password which is stored in an appropriate configuration directory. (On *nix systems,
the recommend location is /usr/local/share/Proc4.)

The files Proc4.ini (PHP format) and Proc4.js (javascript format) can be used for saving the key
usernames and passwords. These files are located in the directory file.path(library(help="Proc4")$path,
"config"). To install these files it is necessary to copy the files to the configuration directory and
edit them so that the password reflects local preferences.

The file setupDatabases.js in the config directory creates databases for each of the processes
and stores the appropriate login credentials. (Note that this calls Proc4.js to get these credentials
so that file must be established first.) This is a javascript file designed to be run directly in mongo,
i.e., mongo setupDatabases.js. Note that it must be run by a user which has the appropriate
priveleges to create databases and modify their security (a “root” user).

The file setupProc4.js in the config directory sets up schemas and indexes for collections in the
Proc4 database which are used by the dongle process. Schemas are optional in mongo, but the
indexes should speed up operations.

Dongle Files

The directory file.path(library(help="Proc4")$path, "config") contains files that facili-
tate direct communciation with the mongo database. In particular, there are a number of PHP
scripts which if put in a directory available to the web server will allow remote processes to get
information about users in the system. The scripts are:

PlayerStart.php Called when player logs in on a given day. As data returns information needed
to restore gaming session (currently bank balance and list of trophies earned). Note that player
details are updated by the EI process.

6 Proc4-package

PlayerStop.php Called when player logs out. Currently not used. It is designed to help automat-
ically shut down unneeded processed.

PlayerStats.php Called when current player competency estimates are required, e.g., when dis-
playing player scores. It returns a list of statistics and their values in the data field; the exact
statistics returned depend on the configuration of the EA process. This database collection is
updated by the EA process after each game level is processed.

PlayerLevels.php Called when the game wants the next level. The message data should contain
information about what topic the player is currently addressing and a list of played and un-
played levels, with the unplayed levels sorted so the next level according to protocol is first on
the list. The complete list of levels should be returned so that if levels on the list have already
been completed, a new level would be entered. Although the PHP script has been built, the
AS process to feed it has not.

In addition, there is a file called LLtoP4 in that directory which is a bash script for translating
between xAPI and Proc4 message formats. The function LLtoP4Loop repeatedly downloads xAPI
statements from the learning locker database, translates them to P4 format, and uploads them to the
EI process database.

The vingette file Dongle.pdf describes the dongle and database structure in more detail.

Acknowledgements

Work on the Proc4, EIEvent and EABN packages has been supported by the following grants:

• Bill and Melinda Gates Foundation grant “Games as Learning/Assessment: Stealth Assess-
ment” (no. 0PP1035331, Val Shute, PI)

• National Science Foundation grant “DIP: Game-based Assessment and Support of STEM-
related Competencies” (no. 1628937, Val Shute, PI)

• National Scient Foundation grant “Mathematical Learning via Architectual Design and Mod-
eling Using E-Rebuild.” (no. 1720533, Fengfeng Ke, PI)

• Institute of Educational Statistics Grant: “Exploring adaptive cognitive and affective learning
support for next-generation STEM learning games.” (no. R305A170376-20, Val Shute and
Russell Almond, PIs’)

The Proc4 package developement was led by Russell Almond (Co-PI).

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

The source code, and issues database can be found at https://github.com/ralmond/Proc4

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://github.com/ralmond/Proc4

buildListener 7

See Also

flog.logger, EIEvent, EABN

buildListener Builds a listener from a JSON description.

Description

This is used in configuration, it will build a listener from a JSON description of the listener. The
“name” and “type” fields are required. The other fields should match the arguments for the con-
structor, with the exceptions noted below:

Usage

buildListener(specs, app, dburi, defaultDB="Proc4",
ssl_options=mongolite::ssl_options(),

noMongo = !missing(dburi) && length(dburi) > 0L && nchar(dburi) > 0L)

Arguments

specs A named list (from the JSON) containing the instructions for building the lis-
tener.

app A character value that will get substituted for the string “<app>” in the “name”
and “sender” fields.

dburi If a database is used for this listener, then this is the uri for the connection. Note
that this is specified in the code and not in the JSON.

defaultDB The name of the database with which the Listener will interact, only used if no
dbname field in specs.

ssl_options Options used for an SSL connection to the database. ssl_options.

noMongo A logical value. If true, then the connection to the Mongo database will not be
made, and CRUD operations will basically become no-ops.

Details

The input to this function is a list that comes from JSON (or some other input method that re-
turns a named list). The specs$type field should be the name of a Listener class. This means
that specs$type is the name of a constructor function, and the rest of the spec argument are the
arguments.

Currently, the following fields are used.

name The name of the listener, required. The string “<app>” is substituted for app.

type Required, the name of the constructor for the desired class. The function will generate an
error if this does not correspond to the name of a class.

sender A string insterted into logged messages. The string “<app>” is substituted for app.

8 buildListener

dbname The name of the database in which the messages will be recorded. If not present, then the
defaultdb will be used.

colname The name of the database collection in which the messages will be recorded.

messages A character vector giving the names of the messages the listener will pay attention to.
Note that this maps to the field “messSet” in the listener object.

targetField Used in the UpdateListener and UpsertListener to indicate the field to be modified.

jsonEncoder The name of a function used to encode the field value to be modified as JSON. See
stats2json.

qfields A character vector giving the names of the fields used as the key for finding the message to
replace. Usually should contain c("uid","app").

fields This should be a named character vector (or list) whose names indicate the names of the
observables/statistics to collect, and whose values are the types. See TableListener; this
field maps to the “fieldlist” field of that class.

Other fields in specs are ignored.

Value

An object of the virtual class Listener (i.e., something for which isListener should return true.

Note

The field name “messages” maps to the internal field messSet. The field name “fields” maps to the
internal field fieldlist.

Author(s)

Russell Almond

See Also

Listener, fromJSON

Examples

jspecs <- '[
{

"name":"ppLS<app>",
"type":"TableListener",
"messages":["Coins Earned","Coins Spent", "LS Watched"],
"fields":{
"uid":"character",
"context":"character",
"timestamp":"character",
"currentMoney":"numeric",
"appId":"numeric",
"mess":"character",
"money":"numeric",
"onWhat":"character",

buildListenerSet 9

"LS_duration":"difftime",
"learningSupportType":"character"
}

},
{

"name":"ToEA",
"type":"InjectionListener",
"dbname":"EARecords",
"colname":"EvidenceSets",
"messages":["New Observables"]

},
{

"name":"PPPersistantData",
"type":"UpdateListener",
"dbname":"Proc4",
"colname":"Players",
"targetField":"data",
"jsonEncoder":"trophy2json",
"messages":["Money Earned", "Money Spent"]

}
]'

speclist <- jsonlite::fromJSON(jspecs,FALSE)

l1 <- buildListener(speclist[[1]],"test",mongo::makeDBuri())

l2 <- buildListener(speclist[[2]],"test",mongo::makeDBuri())

l3 <- buildListener(speclist[[3]],"test",mongo::makeDBuri())

buildListenerSet Builds Listener Set from a a JSON configuration

Description

This method builds a ListenerSet for an engine. In particular, the config is list which come from
reading a JSON file (see fromJSON) which contains the rules for building the Listeners in the set.

Usage

buildListenerSet(sender, config, appid, lscol, dbname, dburi,
sslops, registrycol, registrydbname,
mongoverbose = FALSE)

Arguments

sender A character scalar identifying the message sender.

10 buildListenerSet

config A named list providing details of the contained listeners.

appid A character scalar giving the application ID for the application being built.

lscol A character scalar giving the name of the collection used for logging messages
by the message set.

dbname A character scalar giving the name of the database for the message log, as well
as the default database for listeners.

dburi A character scalar giving the URI of the mongo collection.

sslops A list giving options for a SSL connection. See ssl_options.

registrycol A character scalar giving the name of the colleciton for registering output.

registrydbname A character scalar giving the name of the database in which the output registri-
ation collection

mongoverbose A flag for adding debugging information to Mongo calls (see MongoDB).

Details

This method builds the listener set starting by calling buildListener(config[[i]]) for each
element of the config list. This then becomes the listeners to the ListenerSet constructor.

Note that the appid, dburi, dbnmae (mapped to defaultDB), and sslops are passed to buildListeners
to use for defaults.

Value

An object of class ListenerSet.

Author(s)

Russell Almond

See Also

ListenerSet, buildListener

Examples

Not run:
jspecs <- '{

"listeners":[
{

"name":"ToAS",
"type":"InjectionListener",
"dbname":"ASRecords",
"colname":"Statistics",
"messages":["Statistics"]

},
{

"name":"PPStats",
"type":"UpdateListener",
"dbname":"Proc4",

buildMessage 11

"colname":"Statistics",
"targetField":"data",
"jsonEncoder":"stats2json",
"messages":["Statistics"]

}

]}'

speclist <- jsonlite::fromJSON(jspecs,FALSE)

lset <- buildListenerSet("TestEngine",speclist$listeners,
"ecd://pluto.coe.fsu.edu/P4Test",
lscol="Messages",dbname="test",
dburi="", sslops=mongolite::ssl_options(),
registrycol="OutputFiles",
registrydbname="test")

End(Not run)

buildMessage Converts a JSON object into a P4 Message

Description

The buildMessage function is a parser to use with the getOneRec and getManyRecs database query
functions. This function will convert the documents fetched from the database into P4Message
objects.

Usage

buildMessage(rec,class="P4Message")
cleanMessageJlist(rec)
S4 method for signature 'P4Message,list'
as.jlist(obj, ml, serialize = TRUE)
S4 method for signature 'P4Message,list'
parse.jlist(class, rec)

Arguments

rec A named list containing JSON data.

class The class of the object being built. In the case of buildMessage, this can be the
name of the class.

obj The object being converted. This is mostly used for message dispatch.

ml A named list containing JSON data.

serialize If true, then the serializeJSON method is used to preserve the details field
of the message.

12 buildMessage

Details

The mdbIterate method object returns a list containing the fields of the JSON object with a
name=value format (see jlist). This is the rec argument to buildMessage. In particular, this is a
builder function (see buildObject) which can be passed as the builder argument to getOneRec()
or getOneRec() when the object to be built is a P4Message object.

To facilitate the building subclasses, the (e.g., to check the argument types and insert default values).
The function cleanMessageJlist does that cleaning for the common fields of the P4Message
object, so subclasses P4Message can inheret the parsing for the commond message fields. The
as.jlist method is a helper function for the as.json method. The parse.jlist method (which
calls cleanMessageJList is a helper function for the parse.json method.

The data field needs extra care as it could contain arbitrary R objects. There are two strategies
for handling the data field. First, use serializeJSON to turn the data field into a slob (string large
object), and unserializeJSON to decode it. This strategy should cover most special cases, but does
not result in easily edited JSON output. Second, recursively apply unboxer and use the function
parseSimpleData to undo the coding. This results in output which should be more human readable,
but does not handle objects (either S3 or S4). It also may fail on more complex list structures.

Value

The function buildMessage returns a P4Message object populated with fields from the rec argu-
ment. The function cleanMessageJlist and the parse.jlist method returns the cleaned rec
argument (suitable for passing to the P4Message constructor).

The function as.jlist method returns the processed ml object (ready to be converted to JSON).

Note

I hit the barrier pretty quickly with trying to unparse the data manually. In particular, it was impos-
sible to tell the difference between a list of integers and a vector of integers (or any other storage
type). So, I went with the serialize solution.

The downside of the serial solution is that it stores the data field as a slob. This means that data
values cannot be indexed. If this becomes a problem, a more complex implementation may be
needed.

Author(s)

Russell Almond

See Also

as.jlist, getOneRec, getManyRecs, P4Message

serializeJSON, unserializeJSON

Examples

m1 <- P4Message("Fred","Task1","PP","Task Done",
details=list("Selection"="B"))

m2 <- P4Message("Fred","Task1","EI","New Obs",
details=list("isCorrect"=TRUE,"Selection"="B"))

CaptureListener-class 13

m3 <- P4Message("Fred","Task1","EA","New Stats",
details=list("score"=1,"theta"=0.12345,"noitems"=1))

ev1 <- P4Message("Phred","Level 1","PP","Task Done",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list("list"=list("one"=1,"two"=1:2),"vector"=(1:3)))

m1a <- buildMessage(mongo::ununboxer(as.jlist(m1,attributes(m1))))
m2a <- buildMessage(mongo::ununboxer(as.jlist(m2,attributes(m2))))
m3a <- buildMessage(mongo::ununboxer(as.jlist(m3,attributes(m3))))

ev1a <- buildMessage(mongo::ununboxer(as.jlist(ev1,attributes(ev1))))

CaptureListener-class Class "CaptureListener"

Description

This listener simply takes its messages and adds them to a list. It is is mainly used for testing the
message system.

Details

This listener simply takes all messages and pushes them onto the messages field. The messages
field is the complete list of received messages, most recent to most ancient. The method lastMessage()
returns the most recent message.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "CaptureListener"): returns true.

receiveMessage signature(x = "CaptureListener"): If the message is in the messSet, it adds
the message to the message list. (See details)

listenerName signature(x= "InjectionListener"): Returns the name assigned to the listener.

listenerDataTable signature(listener = "CaptureListener", appid): Builds a data datable
from the messages.

Data Table

When the listenerDataTable method is called, the table is made by applying the attributes
function to the $messages list. As these are presumably P4Message objects, this will expose the
fields as a database.

14 cleanMessageQueue

Fields

messages: Object of class list the list of messages in reverse chronological order.

Class-Based Methods

lastMessage(): Returns the most recent message.

receiveMessage(mess): Does the work of inserting the message. See Details.

reset(app): Empties the message list.

initialize(messages, ...): Sets the default values for the fields.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, CaptureListener, UpdateListener, UpsertListener, InjectionListener,
TableListener,

Examples

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EABN",mess="Statistics",
details=list("Physics_EAP"=0.5237,"Physics_Mode"="High"))

cl <- CaptureListener()
receiveMessage(cl,mess1)
stopifnot(all.equal(mess1,cl$lastMessage()))

cleanMessageQueue Removes messages matching query from queue.

Description

Often a queue will contain a number of messages which do not get processed. This function cleans
out messages from the queue. This is typically called both before (called “cleaning”) importing new
messages (see importMessages) and after (called “purging”).

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

cleanMessageQueue 15

Usage

cleanMessageQueue(queue, query, appid)
S4 method for signature 'MongoQueue'
cleanMessageQueue(queue, query, appid)

Arguments

queue An object of class MessageQueue to be cleaned.

query A list which forms a Mongo query for selecting the messages to be removed.
See buildJQuery.

appid A character scalar giving the name of the application to be cleaned.

Value

Return value is undefined. Called for its side effects (removing messages from database collection).

Will log and throw database errors.

Note

Generates log entries using ‘futile.logger‘.

Currently no method for ‘ListQueue‘ objects.

Author(s)

Russell Almond

See Also

MongoQueue

Examples

mq <- new("MongoQueue","QueueTest",mongo::MongoDB("Messages",noMongo=TRUE),
builder=buildMessage)

Remove Fred's messages from the database.
cleanMessageQueue(mq,list(c(uid="Fred")),"QueueTest")
Purge NO-OP messages from the imported data.
cleanMessageQueue(mq,list(c(mess="NO-OP")),"QueueTest")

16 fetchNextMessage

fetchNextMessage Returns the next unprocessed message from a message queue.

Description

Searchers through the messages for the first unprocessed message. Return NULL if none is found.

Usage

fetchNextMessage(queue)
S4 method for signature 'MessageQueue'
fetchNextMessage(queue)

Arguments

queue The MessageQueue to search.

Details

The ListQueue message iterates through its internal collection until it finds an unprocessed mes-
sage, or it runs out of messages. The MongoQueue message searches the collection.

Value

Either an object of class P4Message or NULL if there are no remaining unprocessed messages.

Note

The ListQueue method returns the current message if it has not been processed. Otherwise, it
increments to pointer until if either finds an unprocessed messages or runs out of messages.

The MongoQueue method sorts the unprocessed messages by timestamp, and returns the one with
the earliest message.

In both cases, markAsProcessed must be called on the processed message to advance the queue.

Author(s)

Russell Almond

See Also

MessageQueue, markAsProcessed, resetProcessedMessages

generateListenerExports 17

Examples

messy <- list(
P4Message("test","Test 1","Tester","Test Message"),
P4Message("test","Test 2","Tester","Test Message",processed=TRUE),
P4Message("test","Test 3","Tester","Test Message"))

messq <- new("ListQueue","Qtest",messy)
mess1 <- fetchNextMessage(messq)
mess1
fetchNextMessage(messq)
markAsProcessed(messq,mess1)
mess2 <- fetchNextMessage(messq)
mess2
markAsProcessed(messq,mess2)
mess3 <- fetchNextMessage(messq)

generateListenerExports

Build tables from messages saved by the listner

Description

The function updateTable extracts a data table from the listener named by which, saves it into the
named file. It then registers the generated file using registerOutput.

The function generateListenerExports calls the updateTable for each element in the export
list, which should be a list of arguments to updateTable.

Usage

generateListenerExports(ls, exportlist, appid, outdir, process = ls$sender)
updateTable(ls, which, type, appid, outdir, fname = "<app>_<name>.csv",

process = ls$sender, flattener = jsonlite::flatten, doc="",
name=which)

Arguments

ls The ListenerSet which contains both the listener and the registry.

exportlist A list of lists of arguments to updateTable.

appid A character scalar giving the name of the application. This should be the long
name (e.g., “ecd://org/unit/assessment” not the short name (“assessment”).

outdir The path to the directory where the output should be stored.

process A character scalare giving the name of the generating process. Passed to registerOutput.

which An itentifier for which listener will generate the table, in other words, the name
of one of the listeners.

type A character string identifying the type of the output. Passed to registerOutput.

18 generateListenerExports

fname A character vector giving a pattern for a file name. The string “<app>” is sub-
stituted for basename(app), the string “<name>” is substituted for name.

flattener A function or string naming a function which is used to flatten nested data. See
details.

name Used to label the table in the registrity.

doc A doc string added to the registrty.

Details

The updateTable function calls the listenerDataTable on the listener ls$listners[[which]].
As the details fields of the messages, could be nested, it might need to be flattened so that it can
be exported as a CSV file, so the flattener function is called. Then the resulting data table is
written out to outdir/fname.

The generateListenerExports is fed a list of arguments for updateTable. The idea is that this
information can be included in the config.json file. Each element should be a list with the fol-
lowing components:

which Required, the name of the listener.

type Optional, the type of the output (for the registry); defaults to “data”.

name Optional, the name of table in the registry. Defaults to which.

fname Optional, the file name. This is actually a pattern, and “<app>” is replaced with basename(appid)
and “<name>” is replaced with name. Default is “<app>_<name>.csv”.

flattener Optional, The name of the flatterner function. Defaults to flatten.

doc Optional, a character string describing the table in the registry.

Note that the appid, outdir and process fields are taken from the call to generateListenerExports.

Value

These functions are mainly used for their side effects. The updateTable function returns the gener-
ated table invisibly, or NULL if listenerDataTable returns NULL. The generateListenerExports
returns the last exported table.

Flattening Complex Data

The data stored in the messages can in fact be nested deeply. So the raw dataframe returned by
listenerDataTable could have columns that are themselves data frames. The function jsonlite::flatten
function unrolls these columns into individual components.

Another frequenly used function is Peanut::flattenStats. In particular, the PnodeMargin statis-
tic returns a labeled vector as output. This function splits it into columns with headers name.state.
Note that to call a function from another package, that package must be named, so a call to require
is in order.

Author(s)

Russell Almond

generateListenerExports 19

See Also

ListenerSet, Listener

listenerDataTable, registerOutput

flatten, flattenStats

Examples

Not run:

config.json <-
'"listeners":[

{"name":"ToAS",
"type":"InjectionListener",
"dbname":"ASRecords",
"colname":"Statistics",
"jsonEncoder":"unparseData",
"jsonDecoder":"parseData",
"messages":["Statistics"]
},
{"name":"PPStats",
"type":"UpdateListener",
"targetField":"data",
"jsonEncoder":"stats2json",
"colname":"Statistics",
"messages":["Statistics"]
}

],
"listenerExports":[

{"which":"PPStats",
"type": "data",
"fname":"stats-<app>.csv",
"flattener":"flattenStats",
"doc": "Reporting statistics"

},
{"which":"ToAS",
"type": "hist",
"fname":"hist-<app>.csv",
"flattener":"flattenStats",
"doc": "History of history variables."

}
]'

config <- jsonlite::fromJSON(config.json,FALSE)
appid <- "ecd://example.edu/testgroup/test"
outdir <- tempdir()
ls <- buildListenerSet("EA",config$listeners, appid,

lscol="Messages",dbname="test",
dburi=mongo::makeDBuri(),
sslops=mongolite::ssl_options(),
registrycol="files",registrydbname="test")

Need to make sure Peanut::flattenStats is recognized

20 importMessages

require(Peanut)

updateTable(ls,"PPstats","data",appid,outdir)

generateListenerExports(ls,config$listenerExports,appid,outdir)

End(Not run)

importMessages Imports a file full of messages into a message queue.

Description

Interts the contents of a JSON file full of messages into the message queue.

Usage

importMessages(queue, filelist, data.dir)
S4 method for signature 'MongoQueue'
importMessages(queue, filelist, data.dir)

Arguments

queue An object of class MessageQueue to be loaded.

filelist A list of filenames of files containing data to be loaded.

data.dir A character scalar giving the pathname of the directory containing the data files.

Value

No particular return message. Used for its side effects.

Note

Current implementation uses the shell function ‘mongoimport‘ which may not be the best imple-
mentation if the Mongo server is on a different machine.

Author(s)

Russell Almond

See Also

MongoQueue, cleanMessageQueue

InjectionListener-class 21

Examples

Not run:
mq <- MongoQueue("Test",mongo::MongoDB("TestMessages","test"))

importMessages(mq,c("PretestResults.json","TestResults.json"),"/usr/local/share/Proc4/data/")

End(Not run)

InjectionListener-class

Class "InjectionListener"

Description

This listener takes messages that match its incomming set and inject them into another Mongo
database (presumably a queue for another service).

Details

The database is a mongo collection identified by dburi, dbname and colname (collection within the
database). The mess field of the P4Message is checked against the applicable messages in messSet.
If it is there, then the message is inserted into the collection.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "InjectionListener"): returns true.

receiveMessage signature(x = "InjectionListener", message): If the message is in the messSet,
it saves the message to the database. (See details)

listenerName signature(x= "InjectionListener"): Returns the name assigned to the listener.

listenerDataTable signature(listener = "InjectionListener", appid): Builds a data dat-
able from the messages.

Data Table

When the listenerDataTable method is called, a general find query (mdbFind on the backing
collection. The app, uid, context, timestamp fields are selected, and the data (details) field is
unpackaged and added as additional columns.

22 InjectionListener-class

Fields

sender: Object of class character which is used as the sender field for the message.

dbname: Object of class character giving the name of the Mongo database

dburi: Object of class character giving the url of the Mongo database.

colname: Object of class character giving the column of the Mongo database.

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(message) is an element of messSet will be inserted.

db: Object of class MongoDB giving the database. Use messdb() to access this field to makes sure
it has been set up.

Class-Based Methods

messdb(): Accessor for the database collection. Initializes the connection if it has not been set up.

receiveMessage(message): Does the work of inserting the message. See Details.

reset(app): Empties the database collection of messages with this app id.

initialize(sender, dbname, dburi, colname, messSet, ...): Sets default values for fields.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, InjectionListener, UpdateListener, UpsertListener, CaptureListener,
TableListener, mongo

Examples

Not run:

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="New Observables",
details=list(trophy="gold",solvedtime=10))

ilwind <- InjectionListener(sender="EIEvent",messSet="New Observables")
receiveMessage(ilwind,mess1)

End(Not run)

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

Listener 23

Listener A listener is an object which can recieve a message.

Description

A listener an an object that takes on the observer or listerner role in the the listener (or observer)
design pattern. A listener will register itself with a speaker, and when the speaker sends a message
it will act accordingly. The receiveMessage generic function must be implemented by a listener.
It is called when the speaker wants to send a message.

Usage

receiveMessage(x, message)
isListener(x)
S4 method for signature 'ANY'
isListener(x)
clearMessages(x, app)
listenerName(x)
listeningFor(x, newSet)

Arguments

x A object of the virtual class Listner.

message A P4Message which is being transmitted.

app A character scalar identifying the application served by the listener.

newSet A character vector giving the messages the listener is listening for. If empty, the
listener processes all messages it recieves.

Details

The RefListener class is an abstract class. Any object can become a listener by giving it a method
for receiveMessage. The message is intended to be a subclass of P4Message, but in practice, no
restriction is placed on the type of the message.

As RefListener an abstract class, it means definition. Instead the generic function isListner is
used to test if the object is a proper listener or not. The default method checks for the presence of
a receiveMessage method. As this might not work properly with S3 objects, an object can also
register itself directly by setting a method for isListner which returns true.

Typically, a lister will register itself with the speaker objects. For example the ListenerSet$addListener
method adds itself to a list of listeners maintained by the object. When the ListenerSet$notifyListeners
method is called, the receiveMessage method is called on each listener in the list.

Value

The isListener function should return TRUE or FALSE, according to whether or not the object
follows the listner protocol.

The listenerName returns a character scalar with the name of the listener.

24 Listener

The receiveMessage and clearMessages functions are typically invoked for side effects and it
may have any return value.

The listeningFor function returns a character vector giving the messages used by the listener.

Fields

name An identifier for the listener, mainly used in error messages.

messSet A character vector giving the messages list listener will process. Messages whose mess
field are not in the list are not processed. As a special case, if messSet has length 0, then all
messages are processed.

db An object of class MongoDB, which contains a database to contain the messages. Note: if the
subclass does not use this, then the connection to the database will not be made.

Methods

isListener signature(x = "RefListener"): Returns true, as subclasses of RefListener follow
the listener protocol.

receiveMessage signature(x = "RefListener",message="P4Message"): This first checks to
see if mess{(message)} is in the messList field. If so, it delegates the processing of the
message to the $recieveMessage() method. This class-based method must be implemented
in subclasses.

clearMessages signature(sender = "RefListener", app="character"): This delegates the pro-
cess of cleaning the message collection to the $reset() class method.

listenerName signature(x="RefListener"): Returns the name of the listener.

listeningFor signature(x="RefListener", newSet="chracter"): Returns the names of the
messages this listener is listening for. If newSet is supplied, the message set is updated.

Class-Based Methods

initialize(name,db,messSet,...): Provides default values for various fields.

messdb(): Returns the MongoDB object in the db field.

receiveMessage(message): Does the message processing. Note that the RefListener method
returns and error, so subclasses must implement this. Note, also that the filtering of which
messages to handle is done by the S4 method.

reset(app): This method clears out the old messages. Again, subclasses must implement this
method as the RefListener class implementation raises an error. The app argument is be-
cause several different implementations may store messages for more than one application in
the same place.

listeningFor(newSet): This method returns, or if the second argument in present, sets the messSet
field.

Author(s)

Russell Almond

ListenerConstructors 25

References

https://en.wikipedia.org/wiki/Observer_pattern

See Also

Implementing Classes: CaptureListener, UpdateListener, UpsertListener, InjectionListener,
TableListener

Related Classes: ListenerSet, P4Message

Examples

setRefClass("FileListener",fields=c(file="character"),
contains="RefListener",
methods=c(

receiveMessage = function (message) {
cat("I (",listenerName(.self),

") just got the message ",
mess(message),
file=file,append=TRUE)

},
reset = function(app) {

cat("\f",file=file,append=TRUE)
}

))

myListener <- new("FileListener",name="Test",file="",
messSet="Scored Response",
db=mongo::MongoDB(noMongo=TRUE))

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,seletion="D"))

mess2 <- P4Message("Fred","Task 2","Evidence ID","Raw Response",
as.POSIXct("2018-11-04 21:16:45 EST"),
list(seletion="C"))

isListener(myListener)
listenerName(myListener)
receiveMessage(myListener,mess1) ## This one is processed.
receiveMessage(myListener,mess2) ## This one is ignored.
clearMessages(myListener,"")

ListenerConstructors Constructors for Listener Classes

Description

These functions create objects of class CaptureListener, UpdateListener, UpsertListener,
InjectionListener, and TableListener.

https://en.wikipedia.org/wiki/Observer_pattern

26 ListenerConstructors

Usage

CaptureListener(name="Capture",messages = list(),
messSet=character(), ...)

InjectionListener(name="Injection", db = mongo::MongoDB(noMongo=TRUE),
messSet = character(), ...)

UpdateListener(name="Update",db = mongo::MongoDB(noMongo=TRUE),
targetField = "data", qfields = c("app", "uid"),
jsonEncoder = "unparseData", jsonDecoder="parseData",
messSet=character(), ...)

UpsertListener(name="Upsert", messSet = character(),
db = mongo::MongoDB(noMongo=TRUE),
qfields = c("app", "uid"), ...)

TableListener(name = "ppData",
fieldlist = c(uid = "character", context = "character"),
messSet = character(), ...)

Arguments

messages A list into which to add the messages.

messSet A character vector giving the message values of the messages that will be pro-
cessed. Messages whose mess value are not in this list will be ignored by this
listener.

db A MongoDB object which provides reference to a database collection.

targetField The name of the field that will be modified in the database by the UpdateListener.

jsonEncoder A function that will be used to encode the data object as JSON before it is set.
See UpdateListener.

jsonDecoder A function that will be used to decode the data object from JSON when building
tables. See UpdateListener.

qfields The fields that will be used as a key when trying to find matching messages in
the database for the UpsertListener.

name An object of class character naming the listener.

fieldlist A named character vector giving the names and types of the columns of the
output matrix. See TableListener.

... Other arguments passed to the constructor.

Details

The functions are as follows:

CaptureListener Creates an object of class CaptureListener which stores the messages in a
list.

InjectionListener Creates an object of class InjectionListener which inserts the message
into the designated database.

UpdateListener Creates an object of class UpdateListener which updates the designated field.

ListenerConstructors 27

UpsertListener Creates an object of class UpsertListener which insert or replaces the message
in the designated collection.

TableListener Creates an object of class TableListener which adds details from message to
rows of a data frame.

See the class descriptions for more information.

Value

An object of the virtual class Listener.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpsertListener, UpdateListener, CaptureListener, InjectionListener,
TableListener, ListenerSet, mongo

Examples

cl <- CaptureListener()

il <- InjectionListener("Evidence Collector",
db=mongo::MongoDB(collection="EvidenceSets",

db="EARecords",
url = "mongodb://localhost",
noMongo=TRUE),

messSet="New Observables")

upsl <- UpsertListener("Save Observables",
db=mongo::MongoDB(collection="LatestEvidence",

db="EARecords",
url = "mongodb://localhost",
noMongo=TRUE),

messSet="New Observables", qfields=c("app","uid"))

trophy2json <- function(dat) {
paste('{', '"trophyHall"', ':','[',

paste(
paste('{"',names(dat$trophyHall),'":"',dat$trophyHall,'"}',

sep=""), collapse=", "), '],',
'"bankBalance"', ':', dat$bankBalance, '}')

}
ul <- UpdateListener("Player Data",

db=mongo::MongoDB(collection="Players",

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

28 listenerDataTable

db="Proc4",
url = "mongodb://localhost",
noMongo=TRUE),

targetField="data",
messSet=c("Money Earned","Money Spent"),
jsonEncoder="trophy2json")

tabMaker <- TableListener(name="Trophy Table",
messSet="New Observables",
fieldlist=c(uid="character", context="character",

timestamp="character",
solvedtime="numeric",
trophy="ordered(none,silver,gold)"))

listenerDataTable Fetches a data frame containing information captured by listener

Description

A number of listerner capture information. This method extracts the data as a data frame for further
processing.

Usage

listenerDataTable(listener, appid = character())
S4 method for signature 'RefListener'
listenerDataTable(listener, appid = character())

Arguments

listener A Listener subclass where the information was stored.

appid The name of the application whose data is to be extracted. (In case data from
more than one application is stored in the same collection.)

Value

A data.frame giving the requested data.

Note that this data frame could in fact contain columns which are themselves data frames. Consider
calling jsonlite::flatten or Peanut::flattenStats on the output.

Author(s)

Russell Almond

See Also

InjectionListener, registerOutput

ListenerSet-class 29

Examples

Not run:
jspecs <- '{

"listeners":[
{

"name":"ToAS",
"type":"InjectionListener",
"dbname":"ASRecords",
"colname":"Statistics",
"messages":["Statistics"]

}

]}'

speclist <- jsonlite::fromJSON(jspecs,FALSE)
appid <- "ecd://pluto.coe.fsu.edu/P4Test"
outdir <- "/usr/local/share/Proc4/data"

lset <- buildListenerSet("TestEngine",speclist$listeners,
appid=appid,
lscol="Messages",dbname="test",
dburi="", sslops=mongolite::ssl_options(),
registrycol="OutputFiles",
registrydbname="Proc4")

After engine running.

sl <- lset$listeners[["ToAS"]]
sdat <- listenerDataTable(sl,NULL,appid)
registerOutput(ls,"PP Statistics",

file.path(outdir,"PPstats.csv"),
appid,"EA")

End(Not run)

ListenerSet-class Class "ListenerSet"

Description

This is a “mix-in” class that adds a speaker protocol to an object, which is complementary to the
Listener protocol. This object maintains a list of listeners. When the notifyListeners method
is called, it notifies each of the listeners by calling the receiveMessage method on the listener.

Extends

All reference classes extend and inherit methods from "envRefClass". The class union NullListenerSet
is either a ListenerSet or NULL.

30 ListenerSet-class

Methods

isListener signature(x = "ListenerSet"): Returns true, as the ListenerSet follows the listener
protocol.

receiveMessage signature(x = "ListenerSet"): A synonym for notifyListeners.

notifyListeners signature(sender = "ListenerSet"): A synonym for the notifyListeners
internal method.

Protocol

The key to this class is the notifyListeners method. This method should receive as its argument a
P4Message object. (The protocol is fairly robust to the type of message and the type is not enforced.
In fact, any object which has a as.jlist method should work.)

When the notifier is called it performs the following functions:

1. It saves the message to the collection represented by messdb(). If messdb() is NULL (dburi
is the empty string) then the messages is not saved.

2. It calls the receiveMessage method on each of the objects in the listener list.

3. It logs the messages sent using the flog.logger, in the "Proc4" logger. The sending of the
messages is logged a the “INFO” level, and the actual message at the “DEBUG” level.

In addition, the ListenerSet maintains a named list of Listener objects (that is, objects that have
a receiveMessage method). The methods addListener and removeListener maintain this list.

Fields

sender: Object of class character:the name of the source of the messages.

dburi: Object of class character: the URI for the mongo database. If null, then no recording of
messages to a database is done (except possibly in the listeners).

dbname: Object of class character: the name of the database in which messages should be logged.

colname: Object of class character: the name of the collection in which messages should be
logged.

listeners: A named list of Listener objects, that is objects for which isListener is true.

db: Object of class MongoDB which is a handle to the collection where messages are logged, or NULL
if the log database has not been initialized. As the database may have not been initialized,
programs should call the messdb() method which will open the database connection if it is
not yet open.

Class-Based Methods

$notifyListeners(mess): This method calls receiveMessage on all of the listeners. See Proto-
col section above.

$addListener(name, listener): This method addes a lsitener to the list.

$initialize(sender, dburi, listeners, colname, ...): This creates the listener. Note, this
does not initialize the database collection. Call messdb() to initialize the collection.

$removeListener(name): This removes a listener from the collection by its name.

ListQueue-class 31

$reset(app): Empties the database collection of messages with this app id.

$messdb signature(): Returns the mongo database collection to which to log messages. Creates
the column if it has not been initialized.

$registrydb signature(): Returns the mongo database collection in which output files will be
registered.

$registerOutput signature(name, filename, app, process, type="data", doc=""): Adds/updates
a field in the database collection of output files. This allows processes looking at the database
to find output summaries.

Note

The notifyListeners method uses the flog.logger protocol. In particular, it logs sending the
message at the “INFO” level, and the actual message sent at the “DEBUG” level. In particular,
setting flog.threshold(DEBUG,name="Proc4") will turn on logging of the actual message and
flog.threshold(WARN,name="Proc4") will turn off logging of the message sent messages.

It is often useful to redirect the Proc4 logger to a log file. In addition, changing the logging format to
JSON, will allow the message to be recovered. Thus, try flog.layout(layout.json,name="Proc4"
to activate logging in JSON format.

Author(s)

Russell Almond

References

https://en.wikipedia.org/wiki/Observer_pattern

See Also

Listener, receiveMessage, notifyListeners, flog.logger, mongo, P4Message

Listener Classes. CaptureListener, UpdateListener, UpsertListener, InjectionListener,
TableListener

Examples

showClass("ListenerSet")

ListQueue-class Class "ListQueue"

Description

This is a minimal implementation of the MessageQueue abstract class. In this case, the messages
are just held in an internal array. It probably works well for short queues, and does not require a
database or other external connection, so it useful for testing.

https://en.wikipedia.org/wiki/Observer_pattern

32 ListQueue-class

Details

The queue is implemented with a list and a pointer to the current position in the list. The $hasNext()
and $nextMessage() methods implement a typical iterator paradigm.

Note that the MessageQueue paradigm is slightly different. Here the current message is the one
returned by fetchNextMessage() until is is marked as processed (markAsProcessed()), which
will then cause the $nextMessage() method to be called advancing the postition.

Extends

Class "MessageQueue", directly.

All reference classes extend and inherit methods from "envRefClass".

Methods

fetchNextMessage signature(queue = "MessageQueue"): Returns the next unprocessed mes-
sage from the Queue, or ‘NULL‘ if there are no processed messages in the queue.

markAsError signature(col = "ListQueue", mess = "ANY"): Marks a message as an error,
and saves error message in queue.

markAsProcessed signature(col = "ListQueue", mess = "ANY"): Marks a message as processed.

resetProcessedMessages signature(queue = "MongoQueue"): Clears the processed flag for mes-
sages matching the query.

Note, that currently there is no implementing method for cleanMessageQueue or importMessages.

Fields

app: Object of class character giving ID of application.

messages: Object of class list giving the messages.

pos: Object of class integer giving the current position of the queue.

Class-Based Methods

$nextMessage(): Advances the position, and returns the next message (or ‘NULL‘ if all messages
have been returned.

$getCurrent(): Returns the current message.

$initialize(app, messages, ...): initializer

$reset(): Resets the position to the beginnnig of the queue.

$setCurrent(newmess): Updates the message at the current position.

hasNext(): Returns true if there are more messages in the queue.

fetchNextMessage(): Fetches the next unprocessed message. This is either the current message,
if not processed, or the $nextMessage() method is called until the first unprocessed message
is found.

$count(): Returns the number of messages remaining in queue. Note, count includes both pro-
cessed and unprocessed messages.

markAsProcessed 33

Note

This is an experimental implementation, and details may change in future release.

Author(s)

Russell Almond

See Also

MessageQueue,P4Message, MongoDB, fetchNextMessage(), cleanMessageQueue(), importMessages(),
markAsProcessed(), resetProcessedMessages(), buildMessage(), getOneRec()

Examples

showClass("ListQueue")

markAsProcessed Functions for manipulating entries in a message queue.

Description

A collection of message objects can serve as a queue: they can be sorted by their timestamp and
then processed one at a time. The function markAsProcessed sets the processed flag on the message
and then saves it back to the database. The function processed returns the processed flag.

The function markAsError attaches an error to the message and saves it. The function processingError
returns the error (if it exists).

Usage

markAsProcessed(col, mess)
S4 method for signature 'JSONDB,P4Message'
markAsProcessed(col, mess)
S4 method for signature 'ListQueue'
markAsProcessed(col, mess)
S4 method for signature 'MongoQueue,ANY'
markAsProcessed(col, mess)
S4 method for signature 'NULL,P4Message'
markAsProcessed(col, mess)
markAsError(col, mess, e)
S4 method for signature 'JSONDB,P4Message'
markAsError(col, mess, e)
S4 method for signature 'ListQueue'
markAsError(col, mess, e)
S4 method for signature 'MongoQueue,ANY'
markAsError(col, mess, e)
S4 method for signature 'NULL,P4Message'
markAsError(col, mess, e)

34 markAsProcessed

processed(x)
processingError(x)

Arguments

mess An object of class P4Message to be modified.

col A MongoDB collection where the message queue is stored (or an object which
wraps sucha collection). This can also be NULL in which case the message will
not be saved to the database.

e An object indicating the error occurred. Note this could be either a string giving
the error message of an object of an error class. In either case, it is converted to
a string before saving.

x A message object to be queried.

Details

A MongoDB collection of messages can serve as a queue (see MongoQueue). As messages are added
into the queue, the processed flag is set to false. The handler then fetches them one at a time
(sorting by the timestamp). It then does whatever action is required to handle the message. Then
the function markAsProcessed is called to set the processed flag to true and update the entry in
the database.

Some thought needs to be given as to how to handle errors. The function markAsError attaches an
error object to the message and then updates it in the collection. The error object is turned into a
string (using toString) before saving, so it can be any type of R object (in particular, it could be
either the error message or the actual error object thrown by the function).

Value

The functions markAsProcessed and markAsError both return the modified message.

The function processed returns a logical value indicating whether or not the message has been
processed.

The function processingError returns the error object attached to the message, or NULL if no error
object is returned. Note that the error object could be of any type.

Note

The functions markAsProcessed and markAsError do not save the complete record, they just up-
date the processed or error field.

There was a bug in early version of this function, which caused the error to be put into a list when
it was saved. This needs to be carefully checked.

Author(s)

Russell Almond

See Also

P4Message, getOneRec, buildJQuery, timestamp, MessageQueue, resetProcessedMessages

MessageQueue-class 35

Examples

Not run:
col <- mongolite::mongo("TestMessages")
col$remove('{}') # Clear out anything else in queue.
mess1 <- P4Message("One","Adder","Tester","Add me",app="adder",

details=list(x=1,y=1))
mess2 <- P4Message("Two","Adder","Tester","Add me",app="adder",

details=list(x="two",y=2))
mess1 <- saveRec(mess1,col,FALSE)
mess2 <- saveRec(mess2,col,FALSE)

mess <- getOneRec(buildJQuery(app="adder", processed=FALSE),
col, parseMessage, sort = c(timestamp = 1))

iterations <- 0
while (!is.null(mess)) {

if (iterations > 4L)
stop ("Test not terminating, flag not being set?")

iterations <- iterations + 1
print(mess)
print(details(mess))
out <- try(print(details(mess)$x+details(mess)$y))
if (is(out,'try-error'))
mess <- markAsError(mess,col,out)
mess <- markAsProcessed(mess,col)
mess <- getOneRec(buildJQuery(app="adder", processed=FALSE),

col, parseMessage, sort = c(timestamp = 1))

}

mess1a <- getOneRec(buildJQuery(app="adder",uid="One"),col,parseMessage)
mess2a <- getOneRec(buildJQuery(app="adder",uid="Two"),col,parseMessage)
stopifnot(processed(mess1a),processed(mess2a),

is.null(processingError(mess1a)),
grepl("Error",processingError(mess2a)))

End(Not run)

MessageQueue-class Class "MessageQueue"

Description

A message queue is an ordered collection of P4Message objects. The principle idea is that the
fetchNextMessage() function will fetch the next unprocessed message, and consequently, this
can be used to schedule the work for a scoring engine.

Details

The general queue functions are determined by two generic functions: fetchNextMessage(), and
markAsProcessed(). The fetchNextMessage() returns the “first” (the meaning of first is defined

36 MessageQueue-class

by the implementing Queue object) unprocssed message (i.e., processed(mess)=FALSE). Note that
the fetchNextMessage() function will continue to return the same message until it is marked as
processed using markAsProcessed(queue,mess). Note that simply setting processed(mess) <-
FALSE is not sufficient because the change is not stored in the queue.

Extends

All reference classes extend and inherit methods from "envRefClass".

Fields

app: Object of class character giving the name of the application.

GenericFunctions

The following generic functions are designed to work with subclasses of message queues, however,
currently only the MongoQueue has all of the methods.

cleanMessageQueue: Removes messages matching query from queue.

fetchNextMessage: Returns the next unprocessed message from the Queue, or ‘NULL‘ if there are
no processed messages in the queue.

importMessages: Imports messages into a queue from a file.

markAsError: Marks a message as an error, and saves error message in queue.

markAsProcessed: Marks a message as processed.

resetProcessedMessages: Clears the processed flag for messages matching the query.

Class-Based Methods

$initialize(app, ...): Constructor.

$count(): Returns the number of messages remaining in queue.

Note

The current implementations are MongoQueue which uses a database collection for the queue, and
a partially implemented ListQueue which just uses an array of messages. This is not fully imple-
mented.

Some other alternatives would be to link to a formal queuing system, like Kafka, or to some kind of
RPC server.

Author(s)

Russell Almond

See Also

MongoQueue, ListQueue, P4Message, MongoDB, fetchNextMessage(), cleanMessageQueue(),
importMessages(), markAsProcessed(), resetProcessedMessages(), buildMessage(), getOneRec()

mongoAppender-class 37

Examples

showClass("MessageQueue")

mongoAppender-class Class "mongoAppender"

Description

This implements the appender protocol logging to a database. Note that flog.appender expects
a function as its argument. The $logger() method returns a function which can be passed to
flog.appender.

Extends

All reference classes extend and inherit methods from "envRefClass".

Fields

db: Object of class JSONDB the refernce to the column where the log will be stored.

app: Object of class character The application identifier for which we are logging errors. (See
app()).

engine: Object of class character giving the name of the processes (in the 4 Process sense) that
is generating the messages.

tee: Object of class character if this has length greater than zero, it should be a file to which the
log is also sent. If it is "", then the log message is sent to standard output.

Methods

logit(line): This does the work of logging a line.

logger(): This returns a function which does the logging.

Author(s)

Russell Almond

See Also

flog.appender MongoDB

Examples

col <- mongo::MongoDB("ErrorLog","Admin",noMongo=TRUE)
logfile <- tempfile("testlog","/tmp",fileext=".log")
apnd <- mongoAppender(db=col,app="p4test",engine="Tester",tee=logfile)
futile.logger::flog.appender(apnd$logger(),"TEST")

38 MongoQueue-class

MongoQueue-class Class "MongoQueue"

Description

This is a message queue implemented as a database collection.

This wraps a collection in a Mongo (or other JSON-based) database. The fetchNextMessage looks
for the first (earliest timestamp) message which is not processed.

Extends

Class "MessageQueue", directly.

All reference classes extend and inherit methods from "envRefClass".

Methods

cleanMessageQueue signature(queue = "MongoQueue"): Removes messages matching query
from queue.

fetchNextMessage signature(queue = "MessageQueue"): Returns the next unprocessed mes-
sage from the Queue, or ‘NULL‘ if there are no processed messages in the queue.

importMessages signature(queue = "MongoQueue"): Imports messages into a queue from a
file.

markAsError signature(col = "MongoQueue", mess = "ANY"): Marks a message as an error,
and saves error message in queue.

markAsProcessed signature(col = "MongoQueue", mess = "ANY"): Marks a message as pro-
cessed.

resetProcessedMessages signature(queue = "MongoQueue"): Clears the processed flag for mes-
sages matching the query.

Fields

app: Object of class character giving the identifier of the application. This is used to restrict the
app field of the message to match the current application.

messDB: Object of class JSONDB that provides a reference to the database collection storing the
messages.

builder: Object of class function which is used to reconstruct the messages from the data, see
buildMessage() and getOneRec().

Class-Based Methods

$queue(): Returns the JSONDB reference.
$initialize(app, messDB, builder, ...): Constructor.
$fetchNextMessage(): Internal implementation of the fetch method.
$buildIndex(): This method builds an index in the collection. Generally only needs to be done

once.
$count(): Returns the number of unprocessed messages remaining in queue.

notifyListeners 39

Note

It is probably a good idea to build an index on this database using the “processed” and “timestamp”
fields. The $buildIndex() method does this.

Author(s)

Russell Almond

See Also

MessageQueue,P4Message, MongoDB, fetchNextMessage(), cleanMessageQueue(), importMessages(),
markAsProcessed(), resetProcessedMessages(), buildMessage(), getOneRec()

Examples

showClass("MongoQueue")

notifyListeners Notifies listeners that a new message is available.

Description

This is a generic function for objects that send P4Message objects. When this function is called,
the message is sent to the listeners; that is, the receiveMessage function is called on the listener
objects. Often, this protocol is implemented by having the sender include a ListenerSet object.

Usage

notifyListeners(sender, message)

Arguments

sender An object which sends messages.

message A P4Message to be sent.

Value

Function is invoked for its side effect, so return value may be anything.

Author(s)

Russell Almond

See Also

P4Message, Listener, ListenerSet

40 P4Message

Examples

Not run: ## Requires Mongo database set up.
MyListener <- setClass("MyListener",slots=c("name"="character"))
setMethod("receiveMessage","MyListener",

function(x,mess)
cat("I (",x@name,") just got the message ",mess(mess),"\n"))

lset <-
ListenerSet$new(sender="Other",dburi="mongodb://localhost",

colname="messages")
lset$addListener("me",MyListener())

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,seletion="D"))

mess2 <- P4Message("Fred","Task 2","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:17:25 EST"),
list(correct=FALSE,seletion="D"))

lset$notifyListeners(mess1)

lset$removeListener("me")

notifyListeners(lset,mess2)

End(Not run)

P4Message Constructor and accessors for P4 Messages

Description

The function P4Message() creates an object of class "P4Message". The other functions access
fields of the messages.

Usage

P4Message(uid, context, sender, mess, timestamp = Sys.time(),
details = list(), app = "default", processed=FALSE)

app(x)
app(x) <- value
uid(x)
uid(x) <- value
mess(x)
mess(x) <- value
context(x)

P4Message 41

context(x) <- value
sender(x)
sender(x) <- value
timestamp(x)
timestamp(x) <- value
details(x)
details(x) <- value
S4 method for signature 'P4Message'
toString(x,...)
S4 method for signature 'P4Message'
show(object)
S3 method for class 'P4Message'
all.equal(target, current, ..., checkTimestamp = FALSE,

check_ids = TRUE)

Arguments

uid A character object giving an identifier for the user or student.

context A character object giving an identifier for the context, task, or item.

sender A character object giving an identifier for the sender. In the four-process archi-
tecture, this should be one of “Activity Selection Process”, “Presentation Pro-
cess”, “Evidnece Identification Process”, or “Evidence Accumulation Process”.

mess A character object giving a message to be sent.

timestamp The time the message was sent.

details A list giving the data to be sent with the message.

app An identifier for the application using the message.

processed A logical flag: true if the message has been processed and false otherwise.

x A message object to be queried, or converted to a string.

... Addtional arguments for show or all.equal.

object A message object to be converted to a string.

target A P4Message to compare.

current A P4Message to compare.

checkTimestamp Logical flag. If true, the timestamps are compared as part of the equality test.

check_ids Logical flag. If true, the database ids are compared as part of the equality test.

value A new value for the field, type varies, but usually character.

Details

This class represents a semi-structured data object with certain header fields which can be indexed
plus the free-form details() field which contains the body of the message. It can be serielized in
JSON format (using as.json in the Mongo database (using the mongolite package).

Using the public methods, the fields can be read but not set. The generic functions are exported so
that other object can extend the P4Message class. The m_id function accesses the mongo ID of the
object (the _id field).

42 P4Message

The function all.equal.P4Message checks two messages for identical contents. The flags checkTimestamp
and check_ids can be used to suppress the checking of those fields. If timestamps are checked,
they must be within .1 seconds to be considered equal.

Value

An object of class P4Message.

The app(), uid(), context(), sender(), and mess() functions all return a character scalar. The
timestamp(), function returns an object of type POSIXt and the details() function returns a list.

The function all.equal.P4Message returns either TRUE or a vector of mode “character” describing
the differences between target and current.

Author(s)

Russell G. Almond

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

See Also

P4Message — class buildMessage, saveRec, getOneRec

Examples

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,selection="D"))

stopifnot(
app(mess1) == "default",
uid(mess1) == "Fred",
context(mess1) == "Task 1",
sender(mess1) == "Evidence ID",
mess(mess1) == "Scored Response",
timestamp(mess1) == as.POSIXct("2018-11-04 21:15:25 EST"),
details(mess1)$correct==TRUE,
details(mess1)$selection=="D"

)

mess2 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=FALSE,selection="E"))

all.equal(mess1,mess2)
stopifnot(!isTRUE(all.equal(mess1,mess2)))

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

P4Message-class 43

P4Message-class Class "P4Message"

Description

This is a message which is sent from one process to another in the four process architecture. There
are certain header fields with are used to route the message and the details field which is an arbitrary
list of data which will can be used by the receiver.

This class represents a semi-structured data object with certain header fields which can be indexed
plus the free-form details() field which contains the body of the message. It can be serielized in
JSON format (using as.json) or saved in the Mongo database (using the mongolite package).

Objects from the Class

Objects can be created by calls to the P4Message() function.

Message Queues

Because all messages have a processed flag and a timestamp, a message collection becomes a queue.
Simply search for the message with the earliest timestamp with processed(mess)==FALSE and
excute that. Then sets processed equal to true using markAsProcessed.

If an error occurs during processing, the error can be associated with the message by setting the
pError field using markAsError.

Slots

_id: Used for internal database ID.

app: Object of class "character" which specifies the application in which the messages exit.

uid: Object of class "character" which identifies the user (student).

context: Object of class "character" which identifies the context, task, or item.

sender: Object of class "character" which identifies the sender. This is usually one of "Pre-
sentation Process", "Evidence Identification Process", "Evidence Accumulation Process", or
"Activity Selection Process".

mess: Object of class "character" a general title for the message context.

timestamp: Object of class "POSIXt" which gives the time at which the message was generated.

data: Object of class "list" which contains the data to be transmitted with the message.

processed: A logical value: true if the message has been processed, and false if the message is
still in queue to be processed. This field is set with markAsProcessed.

pError: If a error occurs while processing this event, information about the error can be stored
here, either as an R object, or as an R object of class error (or any class). This field is accessed
with processingError and set with markAsError.

44 P4Message-class

Methods

m_id signature(x = "ANY"): returns the _id field, the database ID.

app signature(x = "P4Message"): returns the app field.

as.jlist signature(obj = "P4Message", ml = "list"): coerces the object into a list to be pro-
cessed by toJSON.

as.json signature(x = "P4Message"): Coerces the message into a JSON string.

context signature(x = "P4Message"): returns the context field.

details signature(x = "P4Message"): returns the data associated with the message as a list.

mess signature(x = "P4Message"): returns the message field.

sender signature(x = "P4Message"): returns the sender field.

timestamp signature(x = "P4Message"): returns the timestamp.

uid signature(x = "P4Message"): returns the user ID.

processing signature(x = "P4Message"): returns a logical value indicated whether or not the
message has been marked as processed.

processingError signature(x = "P4Message"): if an error occurred while processing this mes-
sage, returns a value describing the error. Otherwise, returns NULL.

Author(s)

Russell G. Almond

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

See Also

P4Message() — constructor buildMessage, saveRec, getOneRec

Examples

showClass("P4Message")

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

registerOutput 45

registerOutput Registers a file used for output information from an engine.

Description

Many scoring engines provide output data files, or log file. This function registers the output files
in a database collection, so that other functions can find them.

Usage

registerOutput(registrar, name, filename, app, process, type = "data", doc = "")

Arguments

registrar The ListenerSet responsible for registering the the file.

name A character scalar identifying the data file.

filename A character scalar giving the path to the file.

app A character scalar identifying the application

process A character scalar identifying the name of the process (engine) generating the
data).

type A character scalar identify the data type. Currently supported values are “data”
for data files in csv format, and “log” for log files.

doc An object of type character describing the file.

Details

The file system.file("dongle/Status.php",package="Proc4") provides a web interface list-
ing the output files. It generates this by looking at the “OutputFile” collection in the “Proc4”
database. It then builds links to the files, so they can be downloaded.

The registerOutput method is used to add, or update the date on files in the collection.

Value

Mostly used for is side-effects. Returns information about the success of the database operation.

Author(s)

Russell Almond

See Also

ListenerSet, listenerDataTable

46 resetListeners

Examples

Not run:
jspecs <- '{

"listeners":[
{

"name":"ToAS",
"type":"InjectionListener",
"dbname":"ASRecords",
"colname":"Statistics",
"messages":["Statistics"]

}

]}'

speclist <- jsonlite::fromJSON(jspecs,FALSE)
appid <- "ecd://pluto.coe.fsu.edu/P4Test"
outdir <- "/usr/local/share/Proc4/data"

lset <- buildListenerSet("TestEngine",speclist$listeners,
appid=appid,
lscol="Messages",dbname="test",
dburi="", sslops=mongolite::ssl_options(),
registrycol="OutputFiles",
registrydbname="Proc4")

After engine running.

sl <- lset$listeners[["ToAS"]]
sdat <- listenerDataTable(sl,NULL,appid)
registerOutput(ls,"PP Statistics",

file.path(outdir,"PPstats.csv"),
appid,"EA")

End(Not run)

resetListeners Clears messages caches associated with listeners

Description

Listeners often cache the messages in some way. This causes the message cache to be cleared,
and operation which is often useful before a rerun. The which argument is used to control which
listeners should have their cache cleared.

Usage

resetListeners(x, which, app)

resetListeners 47

S4 method for signature 'ListenerSet'
resetListeners(x, which, app)
S4 method for signature 'NULL'
resetListeners(x, which, app)

Arguments

x A ListenerSet object containing the listeners to be reset.

which A character vector containing the names of the listeners to reset. The special
keyword “ALL” means all listeners will be reset. The special keyword “Self”
means that the cache associated with the listener set will be reset.

app A global applicaiton identifier. The reset operation should only be applied to
messages from this application.

Details

Each Listener object (including the listener set) has a $reset() method which empties the cache
of messages. This method calls the $reset() method for each of the listeners named in which. The
special keyword “ALL” is used to reset all listeners and the special keyword “Self” is used to refer
to the ListenerSet object itself (which may have a database colleciton).

Value

The ListenerSet object is returned.

Author(s)

Russell Almond

See Also

ListenerSet, Listener

Examples

Not run: ## Requires Mongo database set up.

data2json <- function(dat) {
toJSON(sapply(dat,unboxer))

}

listeners <- list(
cl = CaptureListener(name="cl"),
upd = UpdateListener(name="upd",messSet="New Observables",

dburi="mongodb://localhost",dbname="test",
targetField="data",jsonEncode="data2json",
colname="Updated"),

ups = UpsertListener(name="ups",sender="EIEvent",messSet="New Observables",
dburi="mongodb://localhost",dbname="test",
colname="Upserted", qfields=c("app","uid")),

il = InjectionListener(name="il",sender="EIEvent",messSet="New Observables",

48 resetProcessedMessages

dburi="mongodb://localhost",dbname="test",
colname="Injected"),

tl = TableListener(name="tl",
messSet="New Observables",
fieldlist=c(uid="character", context="character",

timestamp="character",
solvedtime="numeric",
trophy="ordered(none,silver,gold)"))

)

lset <- ListenerSet$new(sender="Other",dburi="mongodb://localhost",
colname="messages",dbname="test",listeners=listeners)

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="New Observables",
details=list(trophy="gold",solvedtime=10))

resetListeners(lset,"ALL","default")
receiveMessage(lset,mess1)
Check recieved messages.
stopifnot(lset$messdb()$count(buildJQuery(app="default"))==1L,

length(listenersclmessages)==1L,
listenersupdmessdb()$count(buildJQuery(app="default"))==1L,
listenersupsmessdb()$count(buildJQuery(app="default"))==1L,
listenersilmessdb()$count(buildJQuery(app="default"))==1L,
nrow(listenerstlreturnDF())==1L)

resetListeners(lset,c("Self","cl","il","tl"),"default")
stopifnot(lset$messdb()$count(buildJQuery(app="default"))==0L,

length(listenersclmessages)==0L,
listenersupdmessdb()$count(buildJQuery(app="default"))==1L,
listenersupsmessdb()$count(buildJQuery(app="default"))==1L,
listenersilmessdb()$count(buildJQuery(app="default"))==0L,
nrow(listenerstlreturnDF())==0L)

resetListeners(lset,"ALL","default")
stopifnot(lset$messdb()$count(buildJQuery(app="default"))==0L,

length(listenersclmessages)==0L,
listenersupdmessdb()$count(buildJQuery(app="default"))==0L,
listenersupsmessdb()$count(buildJQuery(app="default"))==0L,
listenersilmessdb()$count(buildJQuery(app="default"))==0L,
nrow(listenerstlreturnDF())==0L)

End(Not run)

resetProcessedMessages

Clears the processed flags on the matching messages

resetProcessedMessages 49

Description

The MessageQueue class uses the processed field of the P4Message object to indicate which mes-
sages have been processed. This method clears the processed flag, so that messages can be repro-
cessed.

Usage

resetProcessedMessages(queue, repquery)
S4 method for signature 'MongoQueue'
resetProcessedMessages(queue, repquery)
S4 method for signature 'ListQueue'
resetProcessedMessages(queue, repquery)

Arguments

queue An object of class MessageQueue

repquery A list giving a mongo query (see buildJQuery). Only messages matching the
query will be reprocessed. [Currently, the ListQueue method ignores this argu-
ment.]

Details

When operating on a MongoQueue, an update query is run which sets the processed field of the
messages to FALSE. The repquery is used to unmark a subset of messages.

For the ListQueue method, all messages are unmarked regardless of the query.

Value

Function run for side effects, result is status information.

Note

The current ListQueue implementation is pretty minimal, and will probably get updated.

Author(s)

Russell Almond

See Also

MessageQueue, markAsProcessed, fetchNextMessage

Examples

Writeme

50 TableListener-class

serializeData Produces a string with a JSON representation of an R object

Description

This function wraps the serializeJSON with encodeString to properly quote internal quotes.
This slob (string large object) can be stored in a database. In particular, it is the default method for
the jsonEncoder field of the UpdateListener object.

Usage

serializeData(jlist)

Arguments

jlist A list containing the data to be serialized.

Value

A quoted string containing the JSON representation of the argument.

Author(s)

Russell Almond

See Also

serializeJSON, encodeString, UpdateListener

Examples

dat <- list(response="b", score=1)
serializeData(dat)

TableListener-class Class "TableListener"

Description

A listener that captures data from a P4Message and puts it into a dataframe.

TableListener-class 51

Details

This listener builds up a data frame with selected data from the messages. What data is captured is
controlled by the fieldlist object. This is a named character vector whose names correspond to
field names and whose values correspond to type names (see typeof. The type can also be one of
the two special types, ordered or factor. The following is a summary of the most common types:

"numeric", "logical", "integer", "double": These are numeric values.

"character": These are character values. They are not converted to factors (see factor types be-
low).

"list","raw", other values returned by typeof: These are usuable, but should be used with cau-
tion because the output data frame may not be easy to export to other program.

"ordered(...)", "factor(...)": These produce objects of type ordered and factor with the
comma separated values between the parenthesis passed as the levels argument. For exam-
ple, "ordered(Low,Medium,High)" will produces an ordered factor with three levels. (Note
that levels should be in increasing order for ordered factors, but this doesn’t matter for un-
ordered factors.)

For most fields, the field name is matched to the corresponding element of the details of the
messages. The exceptions are the names app, context, uid, mess, sender, timestamp, which
return the value of the corresponding header fields of the message. Note that

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "TableListener"): TRUE

receiveMessage signature(x = "TableListener"): If the message is in the messSet, it adds a
row to its internal table using the fields specified in fieldlist. (See details.)

listenerName signature(x = "TableListener"): returns the name of the table. This is usually
also the filename where the table will be stored.

listenerDataTable signature(listener = "TableListener", appid): Builds a data datable from
the messages.

Data Table

When the listenerDataTable method is called, the table just returns the internal table.

Fields

name: Object of class character naming the listener.

fieldlist: A named character vector giving the names and types of the columns of the output
matrix. See details.

df: Object of class data.frame this is the output data frame. Note that the first line is blank line.
Use the function $returnDF() to get the valid rows.

52 TableListener-class

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(mess) is an element of messSet will be added to the table..

Class-Based Methods

receiveMessage(mess): Processes the message argument.

initDF(): An internal function that sets up the first row of the table as a blank line of the proper
types. Called by receiveMessage().

initialize(name, fieldlist, messSet, ...): Initializes the fields.

reset(app): Calls initDF() to reset the table.

returnDF(): Returns the part of the df which has data (e.g., omits first line which is used to set
the types.)

Author(s)

Russell Almond, Lukas Liu, Nan Wang

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpdateListener, InjectionListener, CaptureListener, UpsertListener,
TableListener,

Examples

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="New Observables",
as.POSIXct("2018-11-04 21:15:25 EST"),
details=list(trophy="gold",solvedtime=10))

mess2 <- P4Message(app="default",uid="Phred",context="Around the Tree",
sender="EIEvent",mess="New Observables",
as.POSIXct("2018-11-04 21:16:35 EST"),
details=list(trophy="silver",solvedtime=25))

tabMaker <- TableListener(name="Trophy Table",
messSet="New Observables",
fieldlist=c(uid="character", context="character",

timestamp="character",
solvedtime="numeric",
trophy="ordered(none,silver,gold)"))

receiveMessage(tabMaker,mess1)
tabMaker$returnDF()

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

UpdateListener-class 53

UpdateListener-class Class "UpdateListener"

Description

This Listener updates an existing record (in a Mongo collection) for the student (uid), with the
contents of the data (details) field of the message.

Details

The database is a mongo collection identified by dburi, dbname and colname (collection within the
database). The mess field of the P4Message is checked against the applicable messages in messSet.
If it is there, then the record in the database corresponding to the qfields (by default app(mess)
and uid(mess)) is updated. Specifically, the field targetField is set to details(mess). The
function jsonEncoder is called to encode the target field as a JSON object for injection into the
database.

If targetField="", then the behavior is slightly different. Instead the fields in details(mess)
(labeled by their names) are updated.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "UpdateListener"): TRUE

receiveMessage signature(x = "UpdateListener", message): If the message is in the messSet,
it updates the record corresponding to app(mess) and uid(mess) in the database with the
contents of details(mess). (See details.)

listenerName signature(x = "UpdateListener"): Returns the name assigned to the listener.

listenerDataTable signature(listener = "UpdateListener", appid): Builds a data datable
from the messages.

Data Table

When the listenerDataTable method is called, the table is made by applying mdbFind to the
target column. The behavior is different depending on whether or not a targetField is specified.
If there is no target field, then all fields of the column are returned.

If there is a targetField, then the jsonDecoder function is applied to its value, and it is joined
with the app, uid, context, timestamp fields from the header to make the data table.

54 UpdateListener-class

Fields

dbname: Object of class character giving the name of the Mongo database

dburi: Object of class character giving the url of the Mongo database.

colname: Object of class character giving the column of the Mongo database.

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(mess) is an element of messSet will be inserted.

db: Object of class MongoDB giving the database. Use messdb() to access this field to makes sure
it has been set up.

qfields: Object of class character giving the names of the fields which should be considered a
key for the messages.

targetField: Object of class character naming the field which is to be set.

jsonEncoder: A function or a non-empty character scalar naming a function which will be
used to encode details(mess) as a JSON object. The default is unparseData.

decoderEncoder: A function or character scalar naming a function which will be used to de-
code the target field when building a data table. The default is parseData.

Class-Based Methods

messdb(): Accessor for the database collection. Initializes the connection if it has not been set up.

receiveMessage(mess): Does the work of updating the database. See Details.

reset(app): Empties the database collection of messages with this app id.

initialize(sender, dbname, dburi, colname, messSet, ...): Sets default values for fields.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpdateListener, InjectionListener, CaptureListener, UpsertListener,
TableListener, mongo

The function unparseData is the default encoder.

Examples

Updating the data field.
fm <- mongo::fake_mongo(count=list(0L,1L))
ul <- UpdateListener("tester", db=fm,messSet=c("Scored Response"))

New message, insert
mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

UpsertListener-class 55

as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,selection="D"))

receiveMessage(ul,mess1)

Message is update, update.
mess1a <- P4Message("Fred","Task 1","Evidence ID","Scored Response",

as.POSIXct("2018-11-04 21:15:40 EST"),
list(correct=TRUE,selection="D",key="D"))

receiveMessage(ul,mess1a)

No target field, details are added to record.

data2json <- function(dat) {
jsonlite::toJSON(mongo::unboxer(dat))

}

upwind <- UpdateListener(messSet=c("Money Earned","Money Spent"),
db=mongo::MongoDB("Players",noMongo=TRUE),
targetField="",
jsonEncoder="data2json")

mess2 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="Money Earned",
details=list(trophyHall=list(list("Down Hill"="gold"),

list("Stairs"="silver")),
bankBalance=10))

receiveMessage(upwind,mess2)

UpsertListener-class Class "UpsertListener"

Description

This listener takes messages that match its incomming set and inject them into another Mongo
database (presumably a queue for another service). If a matching message exists, it is replaced
instead.

Details

The database is a mongo collection identified by dburi, dbname and colname (collection within the
database). The mess field of the P4Message is checked against the applicable messages in messSet.
If it is there, then the message is saved in the collection.

Before the message is saved, the collection is checked to see if another message exits which matches
on the fields listed in qfields. If this is true, the message in the database is replaced. If not, the
message is inserted.

56 UpsertListener-class

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "UpsertListener"): returns true.

receiveMessage signature(x = "UpsertListener", message): If the message is in the messSet,
it saves or replaces the message inthe database. (See details)

listenerName signature(x = "UpsertListener"): Returns the name assigned to the listener.

listenerDataTable signature(listener = "UpsertListener", appid): Builds a data datable
from the messages.

Data Table

When the listenerDataTable method is called, a general find query (mdbFind on the backing
collection. The app, uid, context, timestamp fields are selected, and the data (details) field is
unpackaged and added as additional columns.

Fields

sender: Object of class character which is used as the sender field for the message.

dbname: Object of class character giving the name of the Mongo database

dburi: Object of class character giving the url of the Mongo database.

colname: Object of class character giving the column of the Mongo database.

qfields: Object of class character giving the names of the fields which should be considered a
key for the messages.

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(mess) is an element of messSet will be inserted.

db: Object of class MongoDB giving the database. Use messdb() to access this field to makes sure
it has been set up.

Class-Based Methods

messdb(): Accessor for the database collection. Initializes the connection if it has not been set up.

receiveMessage(mess): Does the work of inserting the message. See Details.

reset(app): Empties the database collection of messages with this app id.

initialize(sender, dbname, dburi, colname, messSet, qfields, ...): Sets the default val-
ues for the fields.

Author(s)

Russell Almond

withFlogging 57

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpsertListener, UpdateListener, CaptureListener, InjectionListener,
TableListener, mongo

Examples

Not run:
mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",

sender="EABN",mess="Statistics",
details=list("Physics_EAP"=0.5237,"Physics_Mode"="High"))

ul <- UpsertListener(colname="Statistics",qfields=c("app","uid"),
messSet=c("Statistics"))

receiveMessage(ul,mess1)

End(Not run)

withFlogging Invoke expression with errors logged and traced

Description

This is a version of try with a couple of important differences. First, error messages are redirected
to the log, using the flog.logger mechanisms. Second, extra context information can be provided
to aid with debugging. Third, stack traces are added to the logs to assist with later debugging.

Usage

withFlogging(expr, ..., context = deparse(substitute(expr)),
loggername = flog.namespace(),
tracelevel = c("WARN", "ERROR", "FATAL"))

Arguments

expr The expression which will be exectued.
... Additional context arguments. Each additional argument should have an explicit

name. In the case of an error or warning, the additional context details will be
added to the log.

context A string identifying the context in which the error occurred. For example, it can
identify the case which is being processed.

loggername This is passed as the name argument to flog.logger. It defaults to the package
in which the call to withFlogging was made.

tracelevel A character vector giving the levels of conditions for which stack traces should
be added to the log. Should be strings with values “TRACE”, “DEBUG”,
“INFO”, “WARN”, “ERROR” or “FATAL”.

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

58 withFlogging

Details

The various processes of the four process assessment design are meant to run as servers. So when
errors occur, it is important that they get logged with sufficient detail that they can be reproduced,
fixed and added to the test suite to prevent recurrance.

First, signals are caught and redirected to the appropriate flog.logger handler. This has sev-
eral important advantages. First, the output can be directed to various files depending on the
origin package. In general, the name of the package should be the name of the logger. So,
flog.appender(appender.file("/var/log/Proc4/EIEvent_log.json"), name="EIEvent") would
log error from the EIEvent package to the named file. Furthermore, flog.layout(layout.json,name="EIEvent")
will cause the log to be in JSON format.

Second, additional context information is logged at the “DEBUG” level when an condition is sig-
naled. The context string is printed along with the error or warning message. This can be used,
for example, to provide information about the user and task that was being processed when the
condition was signaled. In addition, any of the ... arguments are printed. This can be used to print
information about the message being processed and the initial state of the system, so that the error
condition can be reproduced.

Third, if the class of the exception is in the tracelevel list, then a stack trace will be logged (at
the “DEBUG” level) along with the error. This should aid debugging.

Fourth, in the case of an error or fatal error, an object of class try-error (see try). Among other
things, this guarentees that withFlogging will always return control to the next statement.

Value

If expr executes successfully (with no errors or fatal errors) then the value of expr will be returned.
If an error occurs during execution, then an object of class try-error will be returned.

Author(s)

Russell Almond

References

The code for executing the stack trace was taken from https://stackoverflow.com/questions/
1975110/printing-stack-trace-and-continuing-after-error-occurs-in-r

See Also

try, flog.logger, flog.layout, flog.appender

Examples

Not run:
Setup to log to file in json format.
flog.appender(appender.file("/var/log/Proc4/Proc4_log.json"),

name="Proc4")
flog.layout(layout.json,name="EIEvent")

End(Not run)

https://stackoverflow.com/questions/1975110/printing-stack-trace-and-continuing-after-error-occurs-in-r
https://stackoverflow.com/questions/1975110/printing-stack-trace-and-continuing-after-error-occurs-in-r

withFlogging 59

xy <- withFlogging(stop("shoes untied"),context="walking",foot="left")
stopifnot(is(xy,"try-error"))

xx <- withFlogging(log(-1))
stopifnot(is.nan(xx))

withFlogging(log(-1),tracelevel=c("ERROR","FATAL"))

Index

∗ Message-Queue
cleanMessageQueue, 14
fetchNextMessage, 16
markAsProcessed, 33
resetProcessedMessages, 48

∗ classes
CaptureListener-class, 13
InjectionListener-class, 21
ListenerSet-class, 29
ListQueue-class, 31
MessageQueue-class, 35
mongoAppender-class, 37
MongoQueue-class, 38
P4Message, 40
P4Message-class, 43
TableListener-class, 50
UpdateListener-class, 53
UpsertListener-class, 55

∗ databases
mongoAppender-class, 37

∗ database
buildMessage, 11
cleanMessageQueue, 14
importMessages, 20
ListenerConstructors, 25
listenerDataTable, 28
markAsProcessed, 33
Proc4-package, 2
registerOutput, 45
resetListeners, 46
resetProcessedMessages, 48
serializeData, 50

∗ debugging
withFlogging, 57

∗ error
withFlogging, 57

∗ interface
buildListener, 7
buildListenerSet, 9

buildMessage, 11
fetchNextMessage, 16
generateListenerExports, 17
importMessages, 20
Listener, 23
ListenerConstructors, 25
markAsProcessed, 33
notifyListeners, 39
registerOutput, 45
resetListeners, 46
serializeData, 50

∗ listener
buildListener, 7
buildListenerSet, 9
generateListenerExports, 17
listenerDataTable, 28
registerOutput, 45

∗ objects
Listener, 23
notifyListeners, 39

∗ package
Proc4-package, 2

all.equal, 41
all.equal.P4Message (P4Message), 40
app, 37, 38, 51
app (P4Message), 40
app,P4Message-method (P4Message-class),

43
app<- (P4Message), 40
app<-,P4Message-method

(P4Message-class), 43
appender, 37
as.jlist, 4, 12, 30
as.jlist,P4Message,list-method

(buildMessage), 11
as.json, 3, 4, 12, 41, 43
attributes, 13

BNEngine, 5

60

INDEX 61

buildJQuery, 3, 4, 15, 34, 49
buildListener, 7, 10
buildListenerSet, 9
buildMessage, 4, 11, 33, 36, 38, 39, 42, 44
buildObject, 3, 4, 12

CaptureListener, 4, 14, 22, 25–27, 31, 52,
54, 57

CaptureListener (ListenerConstructors),
25

CaptureListener-class, 13
cleanMessageJlist, 4
cleanMessageJlist (buildMessage), 11
cleanMessageQueue, 14, 20, 32, 33, 36, 38, 39
cleanMessageQueue,MongoQueue-method

(cleanMessageQueue), 14
clearMessages (Listener), 23
clearMessages,ListenerSet-method

(ListenerSet-class), 29
clearMessages,RefListener-method

(Listener), 23
context, 51
context (P4Message), 40
context,P4Message-method

(P4Message-class), 43
context<- (P4Message), 40
context<-,P4Message-method

(P4Message-class), 43

details, 11, 18, 51
details (P4Message), 40
details,P4Message-method

(P4Message-class), 43
details<- (P4Message), 40
details<-,P4Message-method

(P4Message-class), 43

EABN, 7
EIEngine, 5
EIEvent, 7
encodeString, 50
envRefClass, 13, 21, 29, 32, 36–38, 51, 53, 56

factor, 51
fetchNextMessage, 16, 32, 33, 35, 36, 38, 39,

49
fetchNextMessage,MessageQueue-method

(fetchNextMessage), 16
flatten, 18, 19, 28

flattenStats, 18, 19, 28
flog.appender, 37, 58
flog.layout, 31, 58
flog.logger, 3, 4, 7, 30, 31, 57, 58
flog.threshold, 31
fromJSON, 8, 9

generateListenerExports, 17
getManyRecs, 3, 4, 11, 12
getOneRec, 3, 4, 11, 12, 33, 34, 36, 38, 39, 42,

44

importMessages, 14, 20, 32, 33, 36, 38, 39
importMessages,MongoQueue-method

(importMessages), 20
InjectionListener, 4, 14, 22, 25–28, 31, 52,

54, 57
InjectionListener

(ListenerConstructors), 25
InjectionListener-class, 21
isListener, 4, 8, 30
isListener (Listener), 23
isListener,ANY-method (Listener), 23
isListener,CaptureListener-method

(CaptureListener-class), 13
isListener,InjectionListener-method

(InjectionListener-class), 21
isListener,ListenerSet-method

(ListenerSet-class), 29
isListener,RefListener-method

(Listener), 23
isListener,TableListener-method

(TableListener-class), 50
isListener,UpdateListener-method

(UpdateListener-class), 53
isListener,UpsertListener-method

(UpsertListener-class), 55

jlist, 12
JSONDB, 38
jsonlite, 3

layout.json, 31
Listener, 3, 4, 7–9, 13, 14, 19, 21, 22, 23,

27–31, 39, 47, 51–54, 56, 57
Listener-class (Listener), 23
ListenerConstructors, 25
listenerDataTable, 13, 18, 19, 21, 28, 45,

51, 53, 56

62 INDEX

listenerDataTable,CaptureListener-method
(CaptureListener-class), 13

listenerDataTable,InjectionListener-method
(InjectionListener-class), 21

listenerDataTable,RefListener-method
(listenerDataTable), 28

listenerDataTable,TableListener-method
(TableListener-class), 50

listenerDataTable,UpdateListener-method
(UpdateListener-class), 53

listenerDataTable,UpsertListener-method
(UpsertListener-class), 55

listenerName (Listener), 23
listenerName,CaptureListener-method

(CaptureListener-class), 13
listenerName,InjectionListener-method

(InjectionListener-class), 21
listenerName,RefListener-method

(Listener), 23
listenerName,TableListener-method

(TableListener-class), 50
listenerName,UpdateListener-method

(UpdateListener-class), 53
listenerName,UpsertListener-method

(UpsertListener-class), 55
ListenerSet, 5, 9, 10, 17, 19, 23, 25, 27, 39,

45, 47
ListenerSet (ListenerSet-class), 29
ListenerSet-class, 29
listeningFor (Listener), 23
listeningFor,RefListener-method

(Listener), 23
ListQueue, 36, 49
ListQueue-class, 31

markAsError, 4, 32, 36, 38, 43
markAsError (markAsProcessed), 33
markAsError,JSONDB,P4Message-method

(markAsProcessed), 33
markAsError,ListQueue,ANY-method

(ListQueue-class), 31
markAsError,ListQueue-method

(markAsProcessed), 33
markAsError,MongoQueue,ANY-method

(markAsProcessed), 33
markAsError,NULL,P4Message-method

(markAsProcessed), 33
markAsProcessed, 3, 4, 16, 32, 33, 33, 35, 36,

38, 39, 43, 49

markAsProcessed,JSONDB,P4Message-method
(markAsProcessed), 33

markAsProcessed,ListQueue,ANY-method
(ListQueue-class), 31

markAsProcessed,ListQueue-method
(markAsProcessed), 33

markAsProcessed,MongoQueue,ANY-method
(markAsProcessed), 33

markAsProcessed,NULL,P4Message-method
(markAsProcessed), 33

mdbFind, 21, 53, 56
mdbIterate, 12
mess, 24, 26, 51
mess (P4Message), 40
mess,P4Message-method

(P4Message-class), 43
mess<- (P4Message), 40
mess<-,P4Message-method

(P4Message-class), 43
MessageQueue, 15, 16, 20, 31–34, 38, 39, 49
MessageQueue-class, 35
mongo, 3, 21, 22, 27, 30, 31, 41, 43, 53–55, 57
mongoAppender, 4
mongoAppender (mongoAppender-class), 37
mongoAppender-class, 37
MongoDB, 10, 24, 26, 30, 33, 34, 36, 37, 39
mongolite, 3
MongoQueue, 15, 20, 34, 36, 49
MongoQueue-class, 38

notifyListeners, 5, 31, 39
notifyListeners,ListenerSet-method

(ListenerSet-class), 29
NullListenerSet (ListenerSet-class), 29
NullListenerSet-class

(ListenerSet-class), 29

ordered, 51

P4Message, 3, 4, 11–14, 16, 21–23, 25, 27, 30,
31, 33–36, 39, 40, 40, 42–44, 49, 50,
52–55, 57

P4Message-class, 43
parse.jlist, 4, 12
parse.jlist,P4Message,list-method

(buildMessage), 11
parse.json, 3, 4, 12
parseData, 54
parseSimpleData, 12

INDEX 63

PnodeMargin, 18
Proc4 (Proc4-package), 2
Proc4-package, 2
processed, 4, 36, 43
processed (markAsProcessed), 33
processed,P4Message-method

(P4Message-class), 43
processingError, 4, 43
processingError (markAsProcessed), 33
processingError,P4Message-method

(P4Message-class), 43

receiveMessage, 4, 5, 29–31, 39
receiveMessage (Listener), 23
receiveMessage,CaptureListener-method

(CaptureListener-class), 13
receiveMessage,InjectionListener-method

(InjectionListener-class), 21
receiveMessage,ListenerSet-method

(ListenerSet-class), 29
receiveMessage,RefListener-method

(Listener), 23
receiveMessage,TableListener-method

(TableListener-class), 50
receiveMessage,UpdateListener-method

(UpdateListener-class), 53
receiveMessage,UpsertListener-method

(UpsertListener-class), 55
RefListener, 5
RefListener (Listener), 23
RefListener-class (Listener), 23
registerOutput, 17, 19, 28, 45
registerOutput,ListenerSet-method

(registerOutput), 45
require, 18
resetListeners, 46
resetListeners,ListenerSet-method

(resetListeners), 46
resetListeners,NULL-method

(resetListeners), 46
resetProcessedMessages, 16, 32–34, 36, 38,

39, 48
resetProcessedMessages,ListQueue-method

(resetProcessedMessages), 48
resetProcessedMessages,MongoQueue-method

(resetProcessedMessages), 48

saveRec, 3, 4, 42, 44
sender, 51

sender (P4Message), 40
sender,P4Message-method

(P4Message-class), 43
sender<- (P4Message), 40
sender<-,P4Message-method

(P4Message-class), 43
serializeData, 50
serializeJSON, 11, 12, 50
show, 41
show,P4Message-method (P4Message), 40
ssl_options, 7, 10
stats2json, 8

TableListener, 5, 8, 14, 22, 25–27, 31, 52,
54, 57

TableListener (ListenerConstructors), 25
TableListener-class, 50
timestamp, 33, 34, 51
timestamp (P4Message), 40
timestamp,P4Message-method

(P4Message-class), 43
timestamp<- (P4Message), 40
timestamp<-,P4Message-method

(P4Message-class), 43
toJSON, 44
toString, 34
toString,P4Message-method (P4Message),

40
try, 57, 58
typeof, 51

uid, 51
uid (P4Message), 40
uid,P4Message-method (P4Message-class),

43
uid<- (P4Message), 40
uid<-,P4Message-method

(P4Message-class), 43
unboxer, 12
unparseData, 54
unserializeJSON, 12
UpdateListener, 4, 8, 14, 22, 25–27, 31, 50,

52, 54, 57
UpdateListener (ListenerConstructors),

25
UpdateListener-class, 53
updateTable (generateListenerExports),

17

64 INDEX

UpsertListener, 4, 8, 14, 22, 25–27, 31, 52,
54, 57

UpsertListener (ListenerConstructors),
25

UpsertListener-class, 55

withFlogging, 3, 4, 57

	Proc4-package
	buildListener
	buildListenerSet
	buildMessage
	CaptureListener-class
	cleanMessageQueue
	fetchNextMessage
	generateListenerExports
	importMessages
	InjectionListener-class
	Listener
	ListenerConstructors
	listenerDataTable
	ListenerSet-class
	ListQueue-class
	markAsProcessed
	MessageQueue-class
	mongoAppender-class
	MongoQueue-class
	notifyListeners
	P4Message
	P4Message-class
	registerOutput
	resetListeners
	resetProcessedMessages
	serializeData
	TableListener-class
	UpdateListener-class
	UpsertListener-class
	withFlogging
	Index

