
Package: EIEvent (via r-universe)
July 5, 2024

Version 0.6-2

Date 2022/07/06

Title Evidence Identification Event Processing Engine

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), methods, utils, Proc4 (>= 0.4), mongo

Imports jsonlite, mongolite, futile.logger, R.utils

Suggests knitr, rmarkdown, tidyr

Description Extracts observables from a sequence of events. Uses a
prolog-like rule language to do the extraction, written in
JSON.

License Artistic-2.0

URL https://pluto.coe.fsu.edu/Proc4

Collate AAGenerics.R Contexts.R Events.R Status.R Condition.R
Predicates.R RuleTables.R testRules.R EIEngine.R Runners.R

VignetteBuilder knitr

Repository https://ralmond.r-universe.dev

RemoteUrl https://github.com/ralmond/EIEvent

RemoteRef HEAD

RemoteSha 8d302ed7510c5ff280033253b881efdbdb20987e

Contents
EIEvent-package . 3
applicableContexts . 9
asif.difftime . 11
buildMessages . 12
checkCondition . 14
cid . 16
Conditions . 18

1

https://pluto.coe.fsu.edu/Proc4

2 Contents

Context . 22
Context-class . 24
ContextSet-class . 26
doc . 28
doLoad . 29
doRunrun . 32
EIEngine . 37
EIEngine-class . 39
EITest-class . 47
Event . 48
Event-class . 51
executePredicate . 53
flag . 57
getJS . 59
handleEvent . 63
loadContexts . 66
loadRulesFromList . 68
mainLoop . 69
matchContext . 72
Predicates . 75
queryResult . 79
removeJS . 81
Rule . 83
Rule-class . 85
RuleTable-class . 90
RuleTest . 92
RuleTest-class . 95
ruleType . 96
runRule . 98
runStatusRules . 101
runTest . 104
setJS . 105
setTimer . 109
start . 112
Status . 115
Status-class . 117
testRule . 120
TestSet-class . 125
Timer . 127
Timer-class . 128
UserRecordSet-class . 130
verb . 132

Index 135

EIEvent-package 3

EIEvent-package Evidence Identification Event Processing Engine

Description

Extracts observables from a sequence of events. Uses a prolog-like rule language to do the extrac-
tion, written in JSON.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

The package runs a EIEngine which is a server process for processing events according the the
EI-Event rules stored in a database.

Configuration

The “quick start” document https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf describes
most of the configuration steps. The directory file.path(help(library="EIEvent")$Path,"conf")
contains a number of files to assist with configuration.

The process assumes that Mongo (https://www.mongodb.com/) is installed on the system (or that
it is available via a network). The files setupMongo.js and setupUsers.js (in the conf directory)
are to be run in the mongo shell. In particular, the setupMongo.js sets up the indexes. Running
these scripts is option, but recommended. See also the configuration instructions in the Proc4
package.

It is also strongly recommended to set up a directory for configuration scripts for the packages in
the Proc4 family. The recommended location on Unix systems is /usr/local/share/Proc4. The
files EIEvent, EIEvent.R, EIini.R, and EILoader.R should be copied to that directory (or to a bin
subdirectory), and edited for local prferences. In particular, the EIini.R file needs to be updated
with local details about the database and passwords, as well as directories for configuration files.
The other files need to be updated to point to the EIini.R file.

The EILoader.R script loads a scoring model into the engine (see the following section). The
EIEvent.R script runs the scoring engine (see Launching and termination, below). The shell script
EIEvent runs the EIEvent.R script as a server process.

Rule Sets and Context Sets

In many respects, the EIEngine is an interpreter for a rule-based programming langugage. The
document Rules of Evidence (https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf) de-
scribes that language specification. Programs are stored in the database. So there are two steps:
loading the rules and contexts (described here), and executing the program on the event queue (de-
scribed below).

The engine processes a queue of Event objects (see the next section) using the following steps:

https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf
https://www.mongodb.com/
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

4 EIEvent-package

1. When the first event for a user arrives, that user is defined an initial Status based on the
default status for that application.

2. The applicableContexts for the current status is determined by consulting the ContextSet
associated with the application. The idea is that a specific context (e.g., a game level) belongs
to several larger context sets (e.g., the set of levels with a comon solution strategy).

3. The RuleTable is consulted to find the set of rules applicable to the current event and context.

4. The Conditions of the rules are run. If the condition is true, the the Predicates of the rules
are run as well.

5. If running the rules updates the Status, then the updated status is saved.

6. If a trigger rule is run and P4Message is built (!send), then the message is sent to the ListenerSet.

7. The event is marked as processed, and then loop goes on to process the next event.

The program consists of three parts:

RuleTable A set of Rule objects which are all stored in the database.

ContextSet A set of context descriptions that play a role in determining when rules are applicable.

A defaul Status The initial status for the application.

The script EILoader.R illustrates the necessary steps. Note that doLoad provides a more sophisti-
cated interface to those steps.

Assuming the EIEngine is in an object called eng the following steps load the details.

1. Load in the rules from a JSON file: ruleList <- lapply(fromJSON(filename , FALSE),
parseRule). The function parseRule creates a rule object from the output of fromJSON.

2. Clear the old rules using eng$clearAllRules().

3. Load the new rules using eng$loadRules(ruleList).

4. Load the context set from a datafile: conMat <- read.csv(filename).

5. Create the initial context: initCon <- data.frame(CID="*INITIAL*", Name="*INITIAL*",
Number=0).

6. Clear Old contexts: eng$clearContexts().

7. Load context mattrix: eng$addContexts(conMat).

8. Load initial context: eng$addContexts(initCon).

9. Clear old records including default: eng$clearStatusRecords(TRUE).

10. Create a new blank status: defaultRec <- eng$newUser("*DEFAULT*").

11. Initialize fields on that record:

• Flag: flag(defaultRec, name) <- value.
• Observable: obs(defaultRec, name) <- value.
• Timers: timer(defaultRec, name) <- Timer(name).

12. Save it back to the database: defaultRec <- eng$saveStatus(defaultRec).

EIEvent-package 5

Events and the Event Queue

Objects of class Event are stored in a database collection (by default, the Events collection in the
EIRecords database). Each event has a processed flag and the timestamp ensure that at any time
the system can find the oldest unprocessed event. When run in server mode, new events can be
added to the collection and the EIEngine will process them as they are added.

A single cycle of the mainLoop consists of the following steps.

1. Fetch the next event with eve <- eng$fetchNextEvent().

2. Process the event with out <- handleEvent(eng,eve).

3. If an error was generated (out is of class try-error), then save the error in the database using
eng$setError(eve, out).

4. Mark the event as processed using eng$setProcessed(eve).

Events can be added to the system using the mongoimport external function. To call this from R, use
system2("mongoimport", sprintf('-d %s -c Events --jsonArray', eng$dbname), stdin=eventFile)

Listeners and Messages

The output of the EI process is through the Listener objects. Trigger rules generate objects of
P4Message (see !send) which are sent to the ListenerSet associated with the EIEngine. When a
trigger rule fires, the !send predicate creates a message which is then sent to the ListenerSet though
the notifyListeners method. This, in turn, calls the receiveMessage method on each of the
listeners.

One of the most common actions in response to a listener firing is to insert or update a record in
another database. This is the mechanism by which the EI process can send its output into the input
queue for the EA process.

Launching and termination

Because the program is already stored in the database, launching the EIEngine as a server process
takes three steps:

1. Create an instance of EIEngine (eng).

2. Create set the active flag for the process to true by calling, eng$activate().

3. Run the mainLoop process. This will run until the active flag is cleared.

The script EIEvent.R runs through these steps. It calls the EIini.R script to get details of con-
figuration, then creates the engine and runs the main loop. The bash shell script EIEvent runs the
EIEvent.R script in a server process (R --slave).

When run from the command line, EIEvent takes four arguments. (These should be specified as
name=value). They are as follows:

app (Required) This is the name of the application to be run. It is usually a URL-like string such
as: ecd://epls.coe.fsu.edu/P4test.

level (Default INFO) This is the default logging level (see Logging below).

clean (default FALSE) If true, then old statuses and messages will be cleaned out before starting.
Otherwise, the current run will be a continuation of the old run.

6 EIEvent-package

evidence (Optional, filename) If this argument is supplied, then the contents of the file will be
read into the event queue before processing. The value of eng$processN will be set to the
number of events, so the function will stop after the events are processed.

The arguments are only relevant when the process is run as a server. The EIEvent.R script can also
be run line-by-line in an R developement environment (e.g., R Studio), in which case the arguments
are replaced by constants set at the beginning of the script.

Unless an event file is given, the script will run an infinite loop. On a *nix system, this usually
means that it should run as a background process, e.g., the call should be nohup EIEvent args &.
This requires a graceful way to close the process down. This is done by setting the active field for
the record corresponding to the application to false in the AuthorizedApps collection of the Proc4
database. A mongo shell call to do this is: db.AuthorizedApps.update({app:{"$regex":"appname"}},
{"$set":{active:false}});, where “appname” can be any string that uniquely identifies the ap-
plication.

If the event file is given, it should be a JSON file will a collection of Event objects. The events
will be loaded into the database and processed. The script will stop when the events are done
processing. Often it is more convenient to run this in the interactive mode as R will still be active
after the completion, so that the results can be inspected.

Logging and Error Handling

Logging is handled using the flog.logger framework. This provides a large number of tools
for specifying the details of the logging. The EIEngine executes the rules in the withFlogging
environment. This means that the default behavior for rules which generate errors is to log the
error and move to the next rule. The error message is also added to the event in the event database
(markAsError).

The amount of logging done, particularly the amount of detail supplied, is controled by the flog.threshold
function. The amount of detail provided at various levels is as follows:

TRACE • The results of checkCondition are reported.
• The specific rules found from each query are reported.
• A message is logged as each rule is run.

DEBUG • When an error occurs information about the state, event and rule where the error
occurred as well a stack trace are logged.

• Each event is logged as it is processed.
• Rule searches are logged and the number of rules reported.
• A message is logged when each phase starts.
• A message is logged when the context changes.

INFO Minimal information about which events are being processed is logged.

WARN and above If an error occurs the error is logged along with context information.

When running the EIEngine as a server, generally the logging should be done as a file. This can
be done by running: flog.appender(appender.file(logfile)). When running in interactive
mode, it may be useful to have log messages sent to both the console and the log file. The command
for this is: flog.appender(appender.file(logfile)).

EIEvent-package 7

Concurrency

Note that several applications can share the same database. The app field of the EIEngine is part
of the key for all of the collections. Generally, database commands will use the app field as part of
the queries, so two engines with different applications ids will have different rule sets, context sets,
status sets and event queues.

Because of this separation, it is possible to run multiple EIEngine processes focused on different
applications. This gives a limited form of parallel processing.

In theory, processing for each uid could be handled separately. This has not been coded in this
version. Future versions may use a language other than R which supports richer tools for multi-
threaded computing.

Acknowledgements

Work on the Proc4, EIEvent and EABN packages has been supported by the National Science foun-
dation grants DIP: Game-based Assessment and Support of STEM-related Competencies (#1628937,
Val Shute, PI) and Mathematical Learning via Architectual Design and Modeling Using E-Rebuild.
(#1720533, Fengfeng Ke, PI).

The EIEvent package developement was led by Russell Almond (Co-PI).

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

There is a “quick start” document which describes how to set up the engine. This is available at
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

See Also

The package Proc4 provides low level support for the database connectivity, which is handled
through the mongo function. Logging is supplied by the flog.logger system.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4

8 EIEvent-package

Examples

Not run:

Initialize the Engine
app <- "ecd://epls.coe.fsu.edu/P4test"
loglevel <- "DEBUG"
cleanFirst <- TRUE
eventFile <- "/home/ralmond/Projects/EvidenceID/c081c3.core.json"

These configuration steps are generally done in EIini.R
These are application generic parameters
EIeng.common <- list(host="localhost",username="EI",password="secret",

dbname="EIRecords",P4dbname="Proc4",waittime=.25)

appstem <- basename(app)
These are for application specific parameters
EIeng.params <- list(app=app)

File for loading configuraitons
config.dir <- "/home/ralmond/ownCloud/Projects/NSFCyberlearning/EvidenceID"

Location of logfile
logfile <- file.path("/usr/local/share/Proc4/logs",

paste("EI_",appstem,"0.log",sep=""))

EI.listenerSpecs <-
list("InjectionListener"=list(sender=paste("EI",appstem,sep="_"),

dbname="EARecords",dburi="mongodb://localhost",
colname="EvidenceSets",messSet="New Observables"))

Setup logging
flog.appender(appender.file(logfile))
flog.threshold(loglevel)

Setup Listeners
listeners <- lapply(names(EI.listenerSpecs),

function (ll) do.call(ll,EI.listenerSpecs[[ll]]))
names(listeners) <- names(EI.listenerSpecs)
if (interactive()) {

cl <- new("CaptureListener")
listeners <- c(listeners,cl=cl)

}

Load the Rules
ruleList <- lapply(jsonlite::fromJSON("rulefile.json", FALSE), parseRule)
eng$clearAllRules()
eng$loadRules(ruleList)

Load Contexts
conMat <- read.csv("contextTable.csv")
initCon <- data.frame(CID="*INITIAL*", Name="*INITIAL*", Number=0)
eng$clearContexts()

applicableContexts 9

eng$addContexts(conMat)
eng$addContexts(initCon)

Setup default status.
eng$clearStatusRecords(TRUE) ## Clears default record
defaultRec <- eng$newUser("*DEFAULT*")
obs(defaultRec,"bankBalance") <- 0
defaultRec <- eng$saveStatus(defaultRec)

Clean out old records from the database.
if (cleanFirst) {

eng$eventdb()$remove(buildJQuery(app=app(eng)))
eng$userRecords$clearAll(FALSE) #Don't clear default
eng$listenerSet$messdb()$remove(buildJQuery(app=app(eng)))
for (lis in eng$listenerSet$listeners) {

if (is(lis,"UpdateListener") || is(lis,"InjectionListener"))
lis$messdb()$remove(buildJQuery(app=app(eng)))

}
}
Process Event file if supplied
if (!is.null(eventFile)) {

system2("mongoimport",
sprintf('-d %s -c Events --jsonArray', eng$dbname),
stdin=eventFile)

Count the number of unprocessed events
NN <- eng$eventdb()$count(buildJQuery(app=app(eng),processed=FALSE))
This can be set to a different number to process only a subset of events.
eng$processN <- NN

}

Activate engine (if not already activated.)
eng$activate()
mainLoop(eng) ## This will not terminate unless processN was set to a

finite value.

This shows the details of the last message. If the test script is
set up properly, this should be the observables.
if (!is.null(eventFile) && TRUE) {

details(cl$lastMessage())
}

End(Not run)

applicableContexts Finds context sets to which a given context belongs.

Description

A Context may belong to one or more context sets. A Rule may operate on a specific context,
a context set, or all contexts (the special context set "ALL"). The function applicableContexts

10 applicableContexts

returns a list of all potential rule context matches. The function belongsTo maintains the implicit
contexts.

Usage

applicableContexts(c)
belongsTo(c)
S4 method for signature 'Context'
belongsTo(c)
S4 method for signature 'ANY'
belongsTo(c)
belongsTo(c) <- value
S4 replacement method for signature 'Context'
belongsTo(c) <- value

Arguments

c An object of class Context

value A character vector containing the names of the context sets this context belongs
to.

Value

The function belongsTo returns a (possibly empty) vector of context set names this context belongs
to. (The ANY method always returns the empty list.) The function applicableContexts returns the
same vector with the addition of the current context ID and the special context "ALL".

Note

It would seem a natural extension of this system to put the contexts into an acyclic directed graph
with the belongsTo function providing the link. This was determined to be more trouble than it was
worth for the current application, so the entire hierarchy must be represented within the belongsTo
field of each context.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the context system: https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

Context describes the context object.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

asif.difftime 11

Examples

ct <- Context("Level1","First Tutorial",1,
belongsTo=c("tutorialLevels","easyLevels"),
doc="First Introductory Level",
app="ecd://epls.coe.fsu.edu/EITest")

stopifnot(setequal(belongsTo(ct),c("tutorialLevels","easyLevels")))
stopifnot(setequal(applicableContexts(ct),

c("Level1","tutorialLevels","easyLevels","ALL","ANY")))

belongsTo(ct) <- "tutorialLevels"
stopifnot(setequal(belongsTo(ct),c("tutorialLevels")))

asif.difftime More flexible constructor for creating difftime objects.

Description

The function asif.difftime is a constructor for difftime objects from a list with components
named “secs”, “mins”, “hours”, “days”, or “weeks”. These get added together.

The function is.difftime is the test function missing from the base package.

Usage

asif.difftime(e2)
is.difftime(x)

Arguments

e2 This should be a list of numeric values with named components with names
selected from: c("secs", "mins", "hours", "days", "weeks").

x An object to be tested for its difftime status.

Value

If the argument to asif.difftime is a list with the appropriate names, then an object of class
difftime is returned. Otherwise, the argument is returned.

The function is.difftime returns a logical value indicating whether or not its argument is of class
difftime

Author(s)

Russell Almond

See Also

difftime4

Also, asif.difftime is used in variuos predicates.

12 buildMessages

Examples

dt <- asif.difftime(list(mins=1,secs=5))
stopifnot (is.difftime(dt),

all.equal(dt,as.difftime(65,units="secs")))

buildMessages These functions build messages for Trigger Rules.

Description

A trigger rule has a special predicate function !send which build a P4Message object to send to
listeners of the EIEngine (through the notifyListeners method.

Usage

buildMessages(predicate, state, event)
"!send"(predicate, state, event)
"!send1"(predicate, state, event)
"!send2"(predicate, state, event)

Arguments

predicate One element of the predicate, or in the case of buildMessages the complete
predicate.

state An object of class Status giving the current state of the system. Note that often
context and oldContext will be different.

event An object of class Event that gives the event that triggered the message.

Details

The function !send builds a P4Message which is then sent to the registered listeners of the EIEngine.
The default message is “"Observables Available"”, which is what the Evidence Accumulation pro-
cess is listening for. The default content is all of the observables.

The rule can override certian defaults of the message by setting appropriate fields of the object that
is the value of the !send element in the predicate.

context The context for the message. Default is oldContext(event). Value can be a direct value
of a field name (starting with “event.data.” or “state.”).

mess The text (subject) of the message. Default is “Observables Available”. Value can be a direct
value of a field reference (starting with “event.data.” or “state.”).

data The fields to be added in the details section of the message. If omitted, all of the observables
are sent (with their default names). If supplied this should either be an named character vector
or named list. The names are used as the names of the details portion of the message, and the
values are field references (starting with “event.data.” or “state.”) for where to find the values.

buildMessages 13

The function buildMessages runs through multiple elements of the predicate and builds multiple
messages. The additional predicates !send1 and !send2 are there to allow for additional messages.
This will also work with the name of an arbitrary R function which takes (predicate, state,
event) as an argument list and returns a message.

Value

The function !send returns an object of class P4Message with the following fields:

app The application, value is app(event).
uid The user ID, value is uid(event).
context The context (task) for this message, default is the value of oldContext(state).
mess The message header. The default value is “Observables Available.”
sender The value is “EIEvent”.
timestamp The timestamp for the message. The value is timestamp(event).
details The data that should be sent with the message. The default is all of the observ-

ables of the Status argument.

Note

JSON parsers are not happy with multiple fields with the same name, so the !send1 and !send2
operators are provided to get around this problem.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

See Also

Rule describes the rule object and Conditions describes the Conditions, and Predicates the predi-
cates in general.

The functions testRule and testRuleScript can be used to test that rule conditions and predicates
function properly together.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

The P4Message class is from the Proc4-package. The notifyListeners method describes the
Proc4 message passing system.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4

14 checkCondition

Examples

st9 <- Status(uid="Test0",context="SpiderWeb",
timestamp=as.POSIXct("2018-09-25 12:13:30 EDT"),
observables=list(agentsUsed=list("Pendulum"),

lastAgent="Pendulum",
badge="gold"))

evnt10 <- Event(uid="Test0",
verb="satisfied",object="game level",
context="SpiderWeb",
timestamp=as.POSIXct("2018-09-25 12:13:30 EDT"),
details= list("badge"="gold"))

mess0 <- buildMessages(list("!send"=list()),st9,evnt10)[[1]]
stopifnot(mess(mess0)=="Observables Available",

length(details(mess0)) == 3L)
mess1 <- buildMessages(list("!send1"=list()),st9,evnt10)[[1]]
messb <- buildMessages(list("!send"=list(mess="Badge",

data=c("badge"="state.observables.badge"))),
st9,evnt10)[[1]]

stopifnot(mess(messb)=="Badge",length(details(messb))==1L)

checkCondition Checks to see if a condition in a EIEvent Rule is true.

Description

An Rule object contains a list of Conditions. The name of each condition is the name of a field of the
Event or Status object. For example, "event.data.trophy"=list("?in"=c("gold","silver"))
would test if the trophy field was set to “gold” or “silver”. The function checkCondition returns
true if all of the conditions are satisfied and false if any one of them is not satisfied.

Usage

checkCondition(conditions, state, event)

Arguments

conditions A named list of conditions: see details.

state An object of class Status to be checked.

event An object of class Event to be checked.

checkCondition 15

Details

The condition of a Rule is a list of queries. Each query has the following form:

field=list(?op=arg,...)

Here, field is an identifier of a field in the Status or Event object being tested. This is in the dot
notation (see getJS). The query operator, ?op is one of the tests described in Conditions. The arg is
a value or field reference that the field will be tested against. In other words, the query is effectively
of the form field ?op arg. The ... represents additional ?op–arg pairs to be tested.

The arg can be a literal value (either scalar or vector) or a reference to another field in the Status
or Event object using the dot notation.

In general, a rule contains a list of queries. A rule is satisfied only if all of its queries are satisfied:
the function checkCondition checks if the rule is satisfied.

Finally, one special query syntax allows for expansion. If the field is replaced with "?where", that is
the query has the syntax "?where"=funname, then the named R is called. This should be a function
of two arguments, the status and the event, which returns a logical value. The condition is satisfied
if the funciton returns true.

See Conditions for more details.

Value

Returns a logical value: TRUE if all conditions are satisfied, false otherwise.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

Rule describes the rule object and Conditions describes the conditions. Predicates describes the
predicate part of the rule, and executePredicate executes the predicate (when the condition is
satisfied).

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

16 cid

Examples

st <- Status("Phred","Level 1",timerNames=character(),
flags=list(lastagent="lever",noobj=7,noagents=0),
observables=list(),
timestamp=as.POSIXct("2018-12-21 00:01"))

ev <- Event("Phred","test","message",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list(agent="lever",newobj=2))

stopifnot(
checkCondition(list(event.data.agent=list("?eq"="lever")),

st,ev)==TRUE, #Agent was lever.
checkCondition(list(event.data.agent="ramp"),

st,ev)==FALSE, #Agent abbreviated form.
checkCondition(list(event.data.agent="state.flags.lastagent"),

st,ev)==TRUE, #Same agent used.
checkCondition(list(state.flags.noobj=list("?lt"=10,"?gte"=5)),

st,ev)==TRUE, #Between 5 and 10 objects.
checkCondition(list(event.data.agent=list("?in"=c("pendulum","springboard"))),

st,ev)==FALSE, #Between 5 and 10 objects.
#Abbreviated form (note lack of names)
checkCondition(list(event.data.agent=c("lever","springboard")),

st,ev)==TRUE,
checkCondition(list(state.flags.lastagent=list("?isna"=TRUE)),

st,ev)==FALSE,
checkCondition(list(state.flags.noagents=

list("?and"=list("?isna"=FALSE,"?gt"=0))),
st,ev)==FALSE

)

agplusobj <- function (state,event) {
return (getJS("state.flags.noobj",state,event) +

getJS("event.data.newobj",state,event) < 10)
}

stopifnot(checkCondition(list("?where"="agplusobj"),st,ev))

cid Accessor functions for context objects.

Description

These functions access the corresponding fields of the Context class.

cid 17

Usage

cid(c)
S4 method for signature 'Context'
cid(c)
number(c)
S4 method for signature 'Context'
number(c)
number(c) <- value
S4 replacement method for signature 'Context'
number(c) <- value
S4 method for signature 'Context'
app(x)

Arguments

c A Context object.

x A Context object.

value An integer giving the new context number.

Value

The function cid returns a unique string identifier for the context. The function number returns a
unique integer identifier. The function app returns the application identifier. The cid and number
should be unique within the app.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the JSON layout of the
Status/State objects. https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

Betts, B, and Smith, R. (2018). The Leraning Technology Manager’s Guid to xAPI, Second Edition.
HT2Labs Research Report: https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/
#gf_26.

HT2Labs (2018). Learning Locker Documentation. https://docs.learninglocker.net/welcome/.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://docs.learninglocker.net/welcome/

18 Conditions

See Also

Context describes the context object. The function applicableContexts describes the context
matching logic.

Examples

ct <- Context("Level1","First Tutorial",1,
belongsTo=c("tutorialLevels","easyLevels"),
doc="First Introductory Level",
app="ecd://epls.coe.fsu.edu/EITest")

stopifnot(cid(ct)=="Level1",basename(app(ct))=="EITest",
number(ct)==1L)

number(ct) <- 0
stopifnot(number(ct)==0L)

Conditions Conditional query operators for Rules.

Description

These are the conditional operators for a Rule. The check that the target value meets the specified
condition (cond). These are called by the function checkCondition which checks that the condition
is correct.

Usage

"?eq"(arg, target, state, event)
"?ne"(arg, target, state, event)
"?gt"(arg, target, state, event)
"?gte"(arg, target, state, event)
"?lt"(arg, target, state, event)
"?lte"(arg, target, state, event)
"?in"(arg, target, state, event)
"?nin"(arg, target, state, event)
"?exists"(arg, target, state, event)
"?isnull"(arg, target, state, event)
"?isna"(arg, target, state, event)
"?regexp"(arg, target, state, event)
"?any"(arg, target, state, event)
"?all"(arg, target, state, event)
"?not"(arg, target, state, event)
"?and"(arg, target, state, event)
"?or"(arg, target, state, event)

Conditions 19

Arguments

arg This is the value of the condition clause (the argument) of the query.

target This is the value of the current state of the referenced field in the query.

state This is a Status object used to resovle dot notation references.

event This is a Event object used to resovle dot notation references.

Details

The condition of a Rule is a list of queries. Each query has the following form:

field=list(?op=arg,...)

Here, field is an identifier of a field in the Status or Event object being tested. This is in the dot
notation (see getJS). The query operator, ?op is one of the tests described in the section ‘Condition
Operators’. The arg is a value or field reference that the field will be tested against. In other words,
the query is effectively of the form field ?op arg. The ... represents additional ?op–arg pairs to be
tested.

The arg can be a literal value (either scalar or vector) or a reference to another field in the Status
or Event object using the dot notation.

In general, a rule contains a list of queries. A rule is satisfied only if all of its queries are satisfied
(essentially joining the queries with a logical-and). At the present time, the only way to get a
logical-or is to use multiple rules.

Finally, one special query syntax allows for expansion. If the field is replaced with "?where", that is
the query has the syntax "?where"=funname, then the named R is called. This should be a function
of two arguments, the status and the event, which returns a logical value. The condition is satisfied
if the funciton returns true.

Value

The condition operators always return a logical value, TRUE if the query is satisfied, and FALSE if
not.

Condition Operators

The syntax for the condition part of the rule resembles the query lanugage used in the Mongo
database (MongoDB, 2018). There are two minor differences: first the syntax uses R lists and
vectors rather than JSON objects and second the ‘$’ operators are replaced with ‘?’ operators.

In general, each element of the list should have the form field=c(?op=arg). In this expression, field
references a field of either the Status or EIEngine (see sQuoteDot Notation section above), ?op is
one of the test operators below, and the argument arg is a litteral value (which could be a list) or a
character string in dot notation referencing a field of either the Status or Event. If ?op is omitted,
it is taken as equals if arg is a scalar and ?in if value is a vector. For more complex queries where
arg is a more complex expresison, the c() function is replaced with list().

The following operators (inspired from the operators used in the Mongo database, Mongo DB,
2018, only with ‘?’ instead of ‘$’) are currently supported:

?eq, ?ne These are the basic operators, which test if the field is (not) equal to the argument.

20 Conditions

?gt, ?gte, ?lt, ?lte These test if the field is greater than (or equal to) or less than (or equal to) the
argument. Note that c("?lt"=low,"?gt"=high) can be used to test if the value of the field is
between the arguments low and high.

?in, ?nin These assume that the argument is a vector and are satisfied if the value of the field is
(not) in the vector.

?exists, ?isnull, ?isna These test if the field exists, contains a NULL (often true if the field does
not exist) or contains an NA. The arg should be TRUE or FALSE (where false inverts the test.)

?any, ?all These operators assume that the field contains a vector and check if any (or all) of the
elements satisfy the condition given in the argument. Thus, the argument is another expression
of the form =c(?op=value). For example field=list("?any"=c("?gt"=3)) will be satisfied
if any element of field is greater than 3.

?not The argument of this query should be another query involving the target field. The not query
is satisfied if the inner query is not satistified.

?or, ?and In both of these cases, the arg should be a list of queries for the applicable field. The
?or query is satisfied if any of the inner queries is satisfied, and the ?and query is satistified if
all of the inner queries are satisfied. Like the R || (&&) operator, the ?or (?and) query runs
the subqueries in order and stops at the first true (false) subquery.

?regex This query uses regular expression matching. The argument should be a regular expression
(see regex for a description of R regular expressions). The query is satisfied if the value of the
field matches the regular expression.

?where This query is a trapdoor that allows arbitrary R code to be run to run as the condition. This
has a special syntax: "?where"=funname, where the ?where operator takes the place of the
field and funname give the name of a function. This should be a function of two arguments,
the status and the event, which returns a logical value. The condition is satisfied if the funciton
returns true.

Although the ?or operator allows for logical-or expressions for a single field, it does not extend to
multiple fields. However, this can be accomplished with separate rules.

Expansion Mechanisms

The special “?where” form obviously allows for expansion. It is particularly designed for queries
which involve multiple fields in a complex fashion.

It is also possible to expand the set of ?op functions. The method used for dispatch is to call
do.call(op,list(cond, target, state, event)) where cond is everything after ?op=cond in
the query expression. (This is the same syntax as the supplied operators).

Condition Testing

The function checkCondition is used internally to check when a set of conditions in a rule are
satisfied.

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly. The functions testRule and testRuleScript can be used to test that rule conditions and
predicates function properly together.

Author(s)

Russell Almond

Conditions 21

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

Rule describes the rule object and Predicates describes the predicates. The function checkCondition
tests when conditions are satisfied. The functions testQuery and testQueryScript can be used
to test that rule conditions function properly.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

list(
event.data.agent=list("?eq"="lever"), #Agent was lever.
event.data.agent="lever", #Agent abbreviated form.
event.data.agent=list("?ne"="ramp"), #Agent was not a ramp.
event.data.agent="state.flag.lastagent", #Same agent used.
state.flags.noobj=list("?lt"=10), #Fewer than 10 objects used.
state.flags.noobj=list("?lt"=10,"?gte"=5), #Between 5 and 10 objects.

#Agent is a lever or a springboard.
event.data.agent=list("?in"=c("lever","springboard")),
#Abbreviated form (note lack of names)
event.data.agent=c("lever","springboard"),
#Agent was not a ramp or a pendulum.
event.data.agent=list("?nin"=c("ramp","pendulum")),

Checking for existence of fields and NA values.
state.timers.learningsupport=list("?exists"=TRUE),
event.data.newvalue=("?isnull"=FALSE),
state.flags.lastagent=list("?isna"=TRUE),

Was the slider a blower (name starts with blower).
event.data.slider=list("?regexp"="^[Bb]lower.*"),

These assume field is a vector.
state.flags.agentsused=list("?any"=list("?eq"="pendulum")),
state.flags.agentsused=list("?any"="pendulum"), #Abbreviated form.
state.flags.agentsused=list("?all"=list("?eq"="ramp")),
state.flags.agentsused=list("?any"="ramp"), #Abbreviated form.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

22 Context

?not
state.flags.agentsused=list("?not"=list("?any"="ramp")),

?and, ?or -- note these stop as soon as falsehood (truth) is proved.
state.flags.noagents=list("?and"=list("?is.na"=FALSE,"?gt"=0)),
state.flags.noagents=list("?or"=list("?is.na"=TRUE,"?eq"=0))

)

The ?Where operator
agplusobj <- function (state,event) {

return (getJS("state.flags.noobj",state,event) +
getJS("event.data.newobj",state,event) < 10)

}

list("?where"="agplusobj")

Context Constructor for the Context object

Description

This is the constructor for the Context objects and context set objects (which are identical). As
Context objects are usually read from a database or other input stream, the parseContext function
is recreates an event from a JSON list and as.jlist encodes them into a list to be saved as JSON.

Usage

Context(cid, name, number, belongsTo = character(), doc = "", app="default")
parseContext(rec)
S4 method for signature 'Context,list'
as.jlist(obj, ml, serialize = TRUE)

Arguments

cid A character identifier for the context. Should be unique within an application
(app).

name A human readable name, used in documentation.

number A numeric identifier for the context.

belongsTo A character vector describing context sets this context belongs to.

doc A character vector providing a description of the context.

app A character scalar providing a unique identifier for the application.

rec A named list containing JSON data.

obj An object of class Context to be encoded.

Context 23

ml A list of fields of obj. Usually, this is created by using attributes(obj).

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code).

Details

Most of the details about the Context object, and how it works is documented under Context-class.
Note that context sets and contexts are represented with the same object.

The function as.jlist converts the obj into a named list. It is usually called from the function
as.json.

The parseContext function is the inverse of as.jlist applied to a context object. It is designed
to be given as an argument to getOneRec and getManyRecs.

Value

The functions Context and parseContext return objects of class Context. The function as.jlist
produces a named list suitable for passing to toJSON.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the context system: https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

Betts, B, and Smith, R. (2018). The Leraning Technology Manager’s Guid to xAPI, Second Edition.
HT2Labs Research Report: https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/
#gf_26.

HT2Labs (2018). Learning Locker Documentation. https://docs.learninglocker.net/welcome/.

See Also

Context describes the context object, and ContextSet describes the context set object.

buildMessage and as.json describe the JSON conversion system.

The functions getOneRec and getManyRecs use parseStatus to extract events from a database.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://docs.learninglocker.net/welcome/

24 Context-class

Examples

ct <- Context("Level1","First Tutorial",1,
belongsTo=c("tutorialLevels","easyLevels"),
doc="First Introductory Level",
app="ecd://epls.coe.fsu.edu/EITest")

cta <- parseContext(as.jlist(ct,attributes(ct)))
stopifnot(all.equal(ct,cta))

Context-class Class "Context"

Description

This is a descriptor for a measurement context (e.g., item or game level) in an assessment system.
A context plays the role of a task in the four process architecture (Almond, Steinberg, and Mislevy,
2002), but allows for the measurement context to be determined dynamically from an extended task.
(Almond, Shute, Tingir, and Rahimi, 2018).

The primary of use of the Context object is determining for which events a rule is applicable. The
belongsTo allows designers of an evidence rule system to define context groups for rules which are
applicable in multiple contexts.

Objects from the Class

Context object can be created by calls to the Context()) function. Most of the fields in the context
are documentation; however, two, the cid and belongsTo fields, play a special role in the rule
dispatch logic. The cid field is the identifier of the context as used in the Rule and Status classes.

The belongsTo attribute sets up a hierarchy of classes. In particular, each value of the of this field
(if set) should be the cid of a context group to which this context belongs. Context groups are also
Context objects and can in turn belong to larger groups. Currently, inheritance is not supported, so
that the all parents (direct and indirect) need to be listed).

Context Resolution

When the EIEngine processes an Event, it checks the context of the current Status object. It then
searches the rule table for all rules which match on the verb and object fields of the event and the
context field of the status. A rule is considered applicable if one of the following conditions is
met.

1. The context fields of the Status and Rule class match exactly.

2. The context fields of the Rule class matches the cid of one of the entries in the belongsTo
field of the Status.

3. The context fields of the Rule is the keyword “ANY”, i.e., the rule is applicable to all classes.

Context-class 25

This is actually accomplished by using the function applicableContexts which creates a list of
the current context and all of the context groups that it matches. The EIEngine then grabs from the
rule table all rules which match one of the applicable contexts (including “ANY”).

This should seem similar to the way that method dispatch works for S4 classes (see Introduction to
the methods package). The Context belongsTo hiearchy is similar to the inheritence hierarchy of
a typical class system. There are two key differences. First, inheritense is not currently supported
with contexts; all context groups must be explicitly listed in the belongsTo field. Second, while
the S4 method dispatch mechanism searches for all methods which are applicable to the current
objects, it only executes the most specific method. The table dispatch mechanism executes all the
applicable rules and makes no attempt to sort them.

Slots

_id: Object of class "character" which is the id in the Mongo database; this generally should not
be changed.

cid: Object of class "character" which provides a unique identifier for the context.

name: Object of class "character" which provides a human readable name for the context.

number: Object of class "integer" which provides a numeric index for the context.

belongsTo: Object of class "character" which gives a list of context IDs for context groups to
which this context belongs.

doc: Object of class "character" which provides extended documentation for the context group.

app: Object of class "character" which a unique identifier for the application in which this con-
text is applicable.

Methods

as.jlist signature(obj = "Context", ml = "list"): Used in converting the object to JSON for
storing in a Mongo database, see as.json.

belongsTo signature(c = "Context"): Returns the value of the belongsTo field

belongsTo<- signature(c = "Context"): Sets the value of the belongsTo field.

cid signature(c = "Context"): Returns the context ID.

doc signature(x = "Context"): Returns the documentation string.

name signature(x = "Context"): Returns the name of the context.

number signature(c = "Context"): Returns the number id of the context.

number<- signature(c = "Context"): Sets the numeric id of the context.

app signature(x = "Context"): Returns the app identifier of the context.

show signature(object = "Context"): Prints the object in a “#<Context >” format.

toString signature(x = "Context",...): Converts the object to a string in a “#<Context >”
format.

Note

It seems natural to create a full inheritance hierarchy for contexts. Probably available in a future
version. For now, explicity listing all parents seems easier to implement.

26 ContextSet-class

Author(s)

Russell Almond

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

See Also

The ContextSet is an object which hold a collection of contexts.

Other classes in the EIEvent system: EIEngine, Event, Status, Rule.

Methods for working with contexts: Context, applicableContexts, parseContext, name, doc,
cid, number, app

Examples

showClass("Context")

ContextSet-class Class "ContextSet"

Description

This is a reference class which is a wrapper for a handle to a database collection of Context objects
associated with a particular application. Note that this is a reference class and many of the methods
permanently modify the database.

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

clearContexts signature(set = "ContextSet"): Removes all of the contexts associated with
this applicaiton from the database.

matchContext signature(id = "character", set = "ContextSet"): searches for a Context
with the given context id (cid).

matchContext signature(id = "integer", set = "ContextSet"): searches for a Context with
a given numeric id (number).

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4

ContextSet-class 27

updateContext signature(con = "Context", set = "ContextSet"): Adds or replaces a Context
in the database.

ContextSet signature(app = "character", dbname = "character", dburi = "character", ...):
Constructor, creates a new context set for the given application, connecting to the database ref-
erenced by dbname and dburi.

Fields

app: Object of class character giving the identifier for the application. This is part of the database
key for the collection.

dbname: Object of class character giving the name of the database (e.g., “EIRecords”).

dburi: Object of class character giving the uri for the database, (e.g., “mongodb://localhost”).

db: Object of class MongoDB which is the handle to the database. As this field is initialized when first
requested, it should not be accessed directly, but instead through the contextdb() method.

Class-Based Methods

update(con): This inserts of replaces a Context object in the database.

initialize(app, dbname, dburi, db, ...): This sets up the object. Note that the db field is not
initialized until contextdb() is first called.

contextdb(): This returns the handle to the mongo collection object. If the connection has not yet
been initialized.

named(id): This searches for the context by context id (cid), not by name.

numbered(num): This searchers for the context by number.

clearAll(): This removes all contexts associated with this application from the database.

Note

In general, several context sets can share the same database collection. These are distinguished by
the application ID (app). The effect primary key for the collection is (app,cid) with a secondary
key as (app,number). The collection maintains an index on both of those field pairs.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the context system: https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

Context describes the context object.

The functions matchContext, updateContext clearContexts, and loadContexts are used to
manipulate context sets.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

28 doc

Examples

showClass("ContextSet")
newContextSet(app="default",colname="test",
dbname="test", dburi=character())

doc Meta-data accessors for Rules and Contexts.

Description

To provide both Rule and Context object with adequate documentation, they are given both name
and doc properties. The name is used in error reporting and debugging. The doc string is to aid in
rule management.

Usage

doc(x)
S4 method for signature 'Context'
doc(x)
S4 method for signature 'Rule'
doc(x)
name(x)
S4 method for signature 'Context'
name(x)
S4 method for signature 'Rule'
name(x)

Arguments

x A Context or Rule object whose documentation is being queried.

Value

Both functions return an object of type character.

Author(s)

Russell Almond

See Also

Classes in the EIEvent system: EIEngine, Context, Status, Event, Rule.

doLoad 29

Examples

r1 <- Rule(name="Coin Rule",
doc="Set the value of the badge to the coin the player earned.",
app="ecd://coe.fsu.edu/PPtest",
verb="satisfied", object="game level",
context="ALL",
ruleType="Observable", priority=5,
condition=list("event.data.badge"=c("silver","gold")),
predicate=list("!set"=c("state.observables.badge"=

"event.data.badge")))

stopifnot(name(r1)=="Coin Rule",grepl("badge",doc(r1)))

ct <- Context("Level1","First Tutorial",1,
belongsTo=c("tutorialLevels","easyLevels"),
doc="First Introductory Level",
app="ecd://epls.coe.fsu.edu/EITest")

stopifnot(name(ct)=="First Tutorial",
grepl("Intro",doc(ct)))

doLoad Construct an Engine and Load the Rules.

Description

This function reads a configuration file (config.json) and then loads the referenced rules into the
database. The assumption is that the ‘config.json‘ will be in git (or other SCCS) system along with
the rules expressed in json notation. The referenced rules are then loaded for the specified app.

Usage

doLoad(app, EI.config, EIeng.local, config.dir, override = FALSE)

Arguments

app A string giving the identifier for the application whose rules are loaded.

EI.config A list giving details about the EI Event environment. This is usually the content
of the ‘config.json‘ file. See details.

EIeng.local A list giving local (machine specific) configuration information.

config.dir A string giving the location of the configuation directory, where the rule files are
located.

override A logical flag. If true, then the rules are loaded even if there currently exists a
lock file to indicate that they are being used.

30 doLoad

Details

The linkS4class{EIEngine} runs against a collection of Rule objects. In the current implemen-
tation, the rules are kept in a mongo database (‘EIRecords.Rules‘). In addition to the rules, there is
a table of Contexts which describe collections of tasks (game levels) to which rules should apply.
Finally, a default student record with proper initial values needs to be created for the application.

Generally, the rules are coded using a ‘json‘ formatted text file, which is parsed and loaded into
the database. These are stored in the directory file.path(config.dir,EI.config$ruledir)
(usually the “Rules” directory in the configuration file). The configuration value EI.config$rules
is character vector giving the names of the rule files (without the “json” suffix). This is passed to
the loadRulesFromList function. The configuration value EI.config$rulesWithTests gives the
name of rule files that come with embedded tests. These use the testAndLoad function instead.

In addition to the rule files, the Contexts must be specified. These are loaded from tables (stored in
CSV files) where the rows correspond to tasks and the columns correspond to higher level contexts
that specific tasks might belong to. This is used to create the collection of contexts in the database.
See loadContexts for details. The value EI.config$contextDescriptions gives a character
vector containing the name (minus the .csv extension) of the context description files.

Finally, the loader creates a default student record. This allows certain fields (which count across
the whole assessment) to be initialized. In Physics playground, the initial back balance is set to
zero and the trophy list is initialized to the empty list. The mechanism is that the doLoad function
creates a new user record called “*DEFAULT*” and sets its initial observables to the values in the
named list EI.config$defaultRecordData. This is then stored in the database. In the future, new
student records are created by cloning the “*DEFAULT*” record.

Value

This function is called for its side effects, and the return value should not be used.

Note

The Github project https://github.com/ralmond/PP-EI/ contains and example set of configu-
ration files used for Physics Playground.

This function is meant to be called by the EILoad.R script found in the config directory. (file.path(help(package="EIEvent")$path,"conf","EILoad.R"))

The shell script EILoader found in the same directory will run this script.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.

https://github.com/ralmond/PP-EI/
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

doLoad 31

Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

EIEngine, doRunrun, loadContexts, loadRulesFromList, testAndLoad

Examples

This script is available in the conf directory
file.path(help(package="EIEvent")$path,"conf","EILoad.R")

Not run:
library(utils)
library(EIEvent)

It is assumed that EIini.R sets the value of
config.dir, EIeng.local and Proc4.config
source("/usr/local/share/Proc4/EIini.R")

EI.config <- jsonlite::fromJSON(file.path(config.dir,"config.json"),FALSE)

appStem is a short nickname for the app
Proc4.config$apps contains the full names indexed by the nicknames.

appStem <- as.character(EI.config$appStem)

apps <- as.character(Proc4.config$apps[appStem])
if (length(apps)==0L || any(apps=="NULL")) {

stop("Could not find apps for ",appStem)
}

ruledir <- ifelse(!is.null(EI.config$ruledir),
EI.config$ruledir,"Rules")

lockfile <- file.path(config.dir,ruledir,"ruleloader.lock")
file.create(lockfile)
logfile <- (file.path(logpath, sub("<app>","Loader",EI.config$logname)))
if (interactive()) {

flog.appender(appender.tee(logfile))
} else {

flog.appender(appender.file(logfile))
}
flog.threshold(EI.config$loglevel)

Loop over apps
for (app in apps)

doLoad(app, EI.config, EIeng.local, config.dir)
unlink(lockfile)

https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

32 doRunrun

End(Not run)

doRunrun Runs the EIEvent engine using the supplied configuration.

Description

This is a system to run the evidence identifiation engine, taking most of the details from a config-
uration file. It creates the EIEngine instance then and then runs it in either scoring or rescoring
mode. Configuration information in taken from the EI.config and EIeng.local parameters.

Usage

doRunrun(app, EI.config, EIeng.local, config.dir, outdir = config.dir,
override = FALSE, logfile = "", noprep = FALSE)

Arguments

app A character string giving the global unique identifier for the application being
run. This is normally formatted like a URL, and basename(app) is used as a
short name.

EI.config A named list containing the configuration details. See the ‘Configuration’ sec-
tion below.

EIeng.local A named list containing additional parameters for the engine constructor. The
intention that these are local configuraiton paramete (e.g., database names and
passwords) as opposed to more global information. Note this must have an
element named “dburi” which gives the URI for the database.

config.dir The pathname of the directory that contains the the rules subdirectories.

outdir The pathname of the directory to which output files will be written.

override A logical flag. If true, the code will ignore locks and restart the run anyway.

logfile Name for the file in which to do logging.

noprep A logical flag. If this value is true then the database preparation operations will
be skipped. This is intended for continuing a run which was interrupted for some
reason.

Details

The goal is to start a run for scoring (evidence identificaiton step) an assessment using the EIEngine
class. This function takes care of many of the configuration details and preparatory steps and then
calls mainLoop to do the major work. In particular, the steps done by this system are as follows:

1. Configure the listeners.

2. Configure the engine.

3. Clean old scores from the database (optional depending on configuration.)

doRunrun 33

4. Remove selected events from the collection. Import new evidence sets into the database and
mark selected evidence as unprocessed. (This step is skipped if the noprep flag is true.)

5. Launch engine using mainLoop.

6. Build and register the obserables output file.

Note that this will run in either rerun mode, where it will score an selection of existing events and
stop, or in server mode where it will continue waiting for new messages until it gets a shut down
signal.

Value

This returns the engine invisibly, in case the calling program wants to do something with it.

Configuration

There are a large number of parameters which can be configured. These are passed in through the
EI.config argument, which is a list of parameters. The intention is that this can be read in from a
JSON file (using fromJSON). The RunEIEvent.R script loads these from a file called config.json.
A sample of this file is available on github https://github.com/ralmond/PP-EI. The idea is
that an entire configuration directory can be stored in a source code control system to manage the
configuration process.

The following fields are available:

ConfigName An identifier for the configuration. Default value "PP-main". Documentation only,
not used by doRunrun.

Branch The branch name for the git branch for this configuraiton. Default value "PP-main". Doc-
umentation only, not used by doRunrun.

Version A version number for the configuration. Documentation only, not used by doRunrun.

Date A edit date for the configuration. Documentation only, not used by doRunrun.

appStem A charcter vector of app stems that will be affected. Sample value ["P4Test"]. This
should be the result of applying basename to the longer application IDs.

logLevel This controls the flog.threshold. Default value "INFO". Note that doRunrun does not
set the log value, that should be done in the calling script.

logname This is the name of the file to which logs should be sent. Example value "EA_<app>0.log".
Note that doRunrun does not set the log file, that should be done in the calling script.

sender The sender field on output messages. Example value "EA_<app>".

ruledir The directory in which rule files are found. This is only read at load time; see doLoad.

contextDescriptions A character vector giving the names of context description files (minus the
.csv extension) in the ruledir directory. see doLoad and loadContexts.

rules A character vector giving the names of rule files (minus the .json extension) in the ruledir
directory. See doLoad and loadRulesFromList.

rulesWithTests A character vector giving the names of rule files (minus the .json extension) in
the ruledir directory. See doLoad and testAndLoad.

defaultRecordData A named list giving the initial values of observables in the default (initial)
student record.

https://github.com/ralmond/PP-EI

34 doRunrun

lscolname The name of the column to which the listener set should log messages. Example value
"Messages".

listeners This is a list of listener descriptions. See the section ‘Listener Configuration’ below.

listenerReset Which listeners should be reset before running. This should be a character scalar
or vector. The values should be names of listeners. The special value “Self” refers to the
ListenerSet object, and the special value “ALL” resets all listeners. See resetListeners.
Example value "ALL".

EIEngine A complex object describing engine parameters. See the section ‘Engine Configuration’
below.

filter A complex object describing how to prefilter the database. See the section ‘Database Filters’
below.

extensions This should be a list of paths (relative to config.dir) containing additional R code to
load. This is not used by doRunrun, but is supplied for use in scripts that might use doRunrun.

mode This is a documentation field.

SRreset A logical flag. If true old student records for the designated application will be cleared
before running.

limitNN An integer: how many events should be processed. Two special string values are also
accepted. “ALL” will process all records currently in the database and stop. “Inf” will cause
the process to run in server mode until it is shut down.

A number of these values do “<app>” substitution, that is they will substitute the string “<app>”
for the short name of the application.

Listener Configruation

The listeners consist of a ListenerSet and a collection of Listener objects. The listener ob-
jects are made by using the information from the “listners” element of the EA.config argument.
This should be a list of specifications (each specification itself is a list). These are passed to
buildListener, which provides some examples.

The listener set is controlled by the EAeng.local$dburi value and the “lscolname” field. If dbuir
is a name of a database, then the ListenerSet is logged into the “lscolname” collection. If dburi
is null or an empty string, then the listener set will not do logging.

Engine Configruation

The arguments to the appropriate constructor are found between the EIeng.local and EI.config$EIEngine
collections. The intent is for the former to include details (e.g., database user names and passwords)
which are local to the server on which EIEvent is running, and for EI.config$EIEngine to include
more public details which are local to a particular run.

See EIEvent for the expected fields. Note that the “processN” field is taken care of separately after
the database operations (next section).

Database Filtering

The EI.config$filter field controls the database filtering process. There are four steps:

Remove old records from the database.

doRunrun 35

Import new records into the database.

Purge unused records from the database.

Reprocess Reset the processed flag to ensure records get reprocessed.

These are controlled by the following elements in the EI.config$filter list:

doRemove Logical, should records be removed before import.

remove Filter to use for removal. The value {} will remove all records for the given app.

importFile A list of filenames (in the config.dir) which contain evidence sets to be imported
before scoring.

doPurge Logical, should records be removed after import.

purge Filter for the purging (after import removal). Leaving this empty will probably not be satis-
factory.

doReprocess Logical, should existing records have the processed flag cleared? Typically TRUE for
rerun mode and FALSE for server mode.

reprocess Filter for the selected records to be marked for reprocessing. The value {} will mark all
records (for this app) for reprocessing.

If the doprep argument is false, the database preprocessing will be skipped regardless of the values
of the filter field.

Locking

Locking is done via the administrative fields of the database. In particular, if the EIEvent process is
marked as running in the database, then the engine will not start. The override switch will force a
start anyway.

Data Files

If any of the listeners is a TableListener, then an output file corresponding to the table will be
produced when the run finishes. The name of that output file is determined by the field in the lister
specificaitons. The datafiles are registered using the ListenerSet$registerOutput method.

Logging

Logging is done through the futile.logger{flog.logger} mechanism. This allows logs to be
save to a file.

The “logLevel” and “logname” fields are put in the configuration specification to assist scripts in
configuring the logging system.

Both the log file is registered using the ListenerSet$registerOutput method.

Note

This function is meant to be called by the RunEIEvent.R script found in the config directory.
(file.path(help(package="EIEvent")$path,"conf","RunEIEvent.R"))

The shell script EIEvent found in the same directory will run this script.

36 doRunrun

Author(s)

Russell Almond

References

The Bobs (1983) Psychokiller. My I’m Large. Rhino Records. https://www.youtube.com/
watch?v=-Gu4PKnCLDg. (Reference is about 2:30 minutes into song.)

See Also

doLoad

EIEngine, mainLoop, ListenerSet

Examples

This example is in:
file.path(help(package="EIEvent")$path,"conf","RunEIEvent.R")
Not run:
library(R.utils)
library(EIEvent)

if (interactive()) {
Edit these for the local application
appStem <- "P4test"
loglevel <- ""
noprep <- FALSE
override <- FALSE

} else {
appStem <- cmdArg("app",NULL)
if (is.null(app) || !grepl("^ecd://",app))
stop("No app specified, use '--args app=ecd://...'")

loglevel <- cmdArg("level","")
noprep <- as.logical(cmdArg("noprep",FALSE))
override <- as.logical(cmdArg("override",FALSE))

}

source("/usr/local/share/Proc4/EIini.R")

EI.config <- jsonlite::fromJSON(file.path(config.dir,"config.json"),FALSE)

app <- as.character(Proc4.config$apps[appStem])
if (length(app)==0L || any(app=="NULL")) {

stop("Could not find app for ",appStem)
}
if (!(appStem %in% EI.config$appStem)) {

stop("Configuration not set for app ",appStem)
}

logfile <- (file.path(logpath, sub("<app>",appStem,EI.config$logname)))

https://www.youtube.com/watch?v=-Gu4PKnCLDg
https://www.youtube.com/watch?v=-Gu4PKnCLDg

EIEngine 37

Let command line override configuration.
if (nchar(loglevel)==OL) loglevel <- EI.config$logLevel

if (interactive()) {
flog.appender(appender.tee(logfile))

} else {
flog.appender(appender.file(logfile))

}
flog.threshold(EI.config$loglevel)

Load extensions.
for (ext in EI.config$extensions) {

if (is.character(ext) && nchar(ext) > 0L) {
if (file.exists(file.path(config.dir,ext))) {

source(file.path(config.dir,ext))
} else {

flog.error(paste("Can't find extension file", ext))
}

}
}

eng <- doRunrun(app,EI.config,EIeng.local,config.dir,outdir,
logfile=logfile, override=override, noprep=noprep)

End(Not run)

EIEngine Creator for the EIEngine class.

Description

The EIEngine is the prime mover for the EIEvent class. This command constructs the engine.
The engine stores most of its information in a database, so the constructor mainly consists of the
database location and credentials.

Usage

EIEngine(app = "default", dburi = makeDBuri(), listenerSet = NULL,
dbname = "EIRecords", admindbname = "Proc4", processN = Inf,
waittime=.25,...)

Arguments

app The application ID for the engine. See Details.

listenerSet A ListenerSet which contains the listeners for clients of the engine’s mes-
sages.

dburi A character scalar giving the login information for the mongo database. See
makeDBuri.

38 EIEngine

dbname This the name of the database. The default name is “EIRecords”.

admindbname Database used for checking if the EIEngine should still be active.

processN A positive integer. When the mainLoop is started, the engine will process N
records before stopping.

waittime The amout of time (in seconds) to wait before checking again for new evidence
sets when the evidence set queue is empty.

... For future expansions, subclasses.

Details

The EIEngine is an interpreter for the rules, which form a code base for a specific engine. The
EIEngine class provides connection to six collections in a database which provide most of the
action of the EIEvent system.

Events Incomming events (Event objects). Accessed through $eventdb() method.

Messages Outgoing messages (P4Message objects). Accessed through ListenerSet ($listenerSet)
object.

Rules Rule collection (Rule objects). Accessed through RuleTable ($rules) object.

States Collection of saved statuses (Status objects). Accessed through UserRecordSet ($userRecords)
object.

Contexts Context collection (Context objects). Accessed through ContextSet ($contexts) ob-
ject.

Tests Self-test collection (EITest objects). Accessed through TestSet ($tests) object.

Note that the database connections are made in a lazy fashion, connecting to the database when first
accessed rather than when the object is created. So the proper accessor methods (e.g., $eventdb()
whould be used instead of the raw field names.

All of the collections have the app field as part of their key, so that several applications can share a
database. A different EIEngine is needed for each application.

Value

A reference object of class EIEngine. See the class page for information about the methods sup-
ported.

Note

This class is not currently threadsafe. In particular, if the handleEvent() function is called simul-
taneously on two different events with the same uid, the result will not be pretty. However, separate
applications can be run in parallel (in different processes or threads).

Author(s)

Russell Almond

EIEngine-class 39

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

The primary classes in the EIEvent system are: EIEngine, Context, Status, Event, Rule.

The EIEngine class is a container for the following classes: UserRecordSet, RuleTable, ContextSet,
TestSet and ListenerSet,

flog.logger

mainLoop, handleEvent

Examples

cl <- new("CaptureListener")
app <- "ecd://epls.coe.fsu.edu/EItest"
lset <- ListenerSet(sender=paste(basename(app),"process"),

db=mongo::MongoDB("Messages",noMongo=TRUE),
listeners=list(cl))

eng <- EIEngine(app=app,listenerSet=lset)

EIEngine-class Class "EIEngine"

Description

This is the main worker class for the EIEvent process. It handles grapping messages and processing
them.

Extends

All reference classes extend and inherit methods from "envRefClass".

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

40 EIEngine-class

Methods

notifyListeners signature(sender = "EIEngine"): This sends a message to the registered lis-
teners of the EIEngine.

app signature(sender = "EIEngine"): Returns a string giving the application this Engine is
supporting.

Database Connections

The EIEngine is an interprer for a rule-based langauge for processing events. The code, the rules,
are stored in a mongo database, as are the events (the input queue) and the status objects. This
database is determined by the dburi (note that this is determined with the username, password,
host and port of the $initialize() method or EIEngine function) and dbname. Note that this
database can be shared by several applications. The app field is used to identify records belonging
to this application.

In the default configuration, the database is called “EIRecords” and has the following collections:

Events This contains the Events to be processed. It can be accessed through the function $eventdb().
Note that each event has a processed field that makes this collection essentially a queue.
Other processes can queue events to be processed by inserting event records into this collec-
tion.

Messages: This is used by the ListenerSet to record messages sent by trigger rules. This collec-
tion can be accessed throught the $listenerSet field.

Rules: This contains the collection of Rules. This collection can be accessed through the $ruleTable
field.

States: This contains the collection of Status objects. This collection can be accessed through the
$userRecords field.

Context: This contains the collection of Context objects. This can be accessed through the $contexts
field.

Tests: This contains the collection of RuleTest objects. This can be accessed through the $ruleTests
field.

The AuthorizedApps collection in the Proc4 database is used to signal when the EI process should
shut down. The initialization argument admindbname is used to set the name of this database,
and the admindb() function to access the collection. Note that all database collections should be
accessed through the accessor function, which initialize the connection on demand, rather than by
accessing the field directly.

The class-based methods, eng$activate() and eng$deactive() turn on an off the flag in the
database that indicates that this app is active. The methods eng$isActivated() tests the status of
that flag. The methods eng$shouldHalt() and eng$stopWhenFinished() check for signals that
the main loop should be terminated immediately or when finished.

The listener objects may also access databases. This is the usual mechanism for the EI process to
insert messages into the processing queue of other processes.

EIEngine-class 41

Activation and Termination

The mainLoop searches the event database for unprocessed events, and processes them in chrono-
logical order. There are three termination conditions. First, if the $processN field (which is decri-
mented after each event is processed) reaches 0, then the main loop will exit. Second, after each
event is processed, it checks the eng$shouldHalt() condition; if this is true, it halts immediately.
Third, if the event queue is empty, the engine will check the eng$stopWhenFinished() flag and
will stop if it is true. Otherwise, it will wait for the waittime (in seconds) and check again.

The method eng$activate() sets the activated flag for this app to true and eng$deactivate()
clears it. These are called from mainLoop. External processes can check this flag in the database by
looking at the value of db.AuthorizedApps.find({"app":{"$regex":"P4test"}}, {"appStem":1,"EIactive":1});.
The code is Mongo shell javascript, and “P4test” should be replaced with any string uniquely iden-
tifying the app (i.e., basename(app)).

The to signal to the process to stop, an external program needs to set the value of the EIsignal field
for the appropriate application. The javascript code db.AuthorizedApps.update({app:{"$regex":"P4test"}},
{"$set":{"EIsignal":<value>}});, where “P4test” should be replaced with any string uniquely
identifying the app, run in the Mongo shell will work. The <value> should be either “finish” or
“halt”. The former triggers the eng$shopWhenFinished() and the latter triggers eng$halt().

Events and the Event Queue

Objects of class Event are stored in a database collection $eventdb(). The processed flag
and the timestamp ensure that at any time the system can find the oldest unprocessed event.
The function $fetchNextEvent() fetches this event. When the event is processed, the function
$setProcessed() can be used to mark it as processed an update the database. The function
$setError() is used to add an error message to an event.

A single cycle of the mainLoop consists of the following steps.

1. Fetch the next event with eve <- eng$fetchNextEvent().

2. Process the event with out <- handleEvent(eng,eve).

3. If an error was generated (out is of class try-error), then save the error in the database using
eng$setError(eve, out).

4. Mark the event as processed using eng$setProcessed(eve).

Note that $setProcessed() still needs to be called even if $setError() is called.

Rules

Each application has a collection of rules or a RuleTable. This rule table is stored in the $rules
field of the EIEngine object. Recall that a rule is applicable to a given event if the verb and object
of the event match the verb and object of rule (or the rule has the special object “ALL”) and the
context of the rule is one of the applicableContexts of the current context of the state.

In the current implementation, the rules are stored in the Rules database. This solves two problems:
rule storage and rule search.

First, the database is where the rules come from when the application starts. The method $loadRules()
stores a list of rules in the database and $clearAllRules() removes all rules. Note that try-
ing to add a second rule with the same name will produce an error, unless the second argument

42 EIEngine-class

(stopOnDups) is set to FALSE. So generally rules need to be cleared before being reloaded. (For
finer replacement see the RuleTable object.) Typically, loading the rules is done in three steps:

1. Load in the rules from a JSON file: ruleList <- lapply(fromJSON(filename , FALSE),
parseRule). The function parseRule creates a rule object from the output of fromJSON.

2. Clear the old rules using eng$clearAllRules().

3. Load the new rules using eng$loadRules(ruleList).

Second, the search for applicable rules can use standard database queries. The function $findRules()
searches the database for rules matching the supplied details. Note that the EIEngine version of this
function differs from the RuleTable version in that it accepts a string as input to for the context
field and finds a context object to match, while the RuleTable version expects an object of class
Context. The phase argument is optional. The first version of the main loop, used the database
to separate out rules of different types. However, this was rather inefficient when there were not
applicable methods for a rule (the most common case). The current version now searches for rules
that would be applicable in any phase of processing and then separates the resulting rule lists.

The $findRules() and rule processing functions do a fair amount of logging, so they can be de-
bugged by setting flog.threshold to a lower value. At the DEBUG level, the number of rules
returned for each event is logged. At the TRACE level, the queries used as well as the names of the
returned rules are logged.

Context Sets

Rules must be applicable to both the current event and in the current Status. The verb and object
fields of the rule can either be a constant, which is matched as an exact string, or the special constant
“ALL” which indicates that the rule is applicable to all verbs or objects.

For Contexts, a second intermediate level is introduced: the context set. The context object defines
which context sets it belongs to through the belongsTo field. Context objects are stored in the
database and are matched to the context field of events using the name field. (The context field
of events is trimmed on input to prevent issues with mismatches caused by trailing spaces, see
buildMessage.)

The field $contexts is a link to a ContextSet class which contains all of the contexts. The function
$getContext() which takes the name of the context as an argument, calls matchContext to find
the context object, and returns the context object. Note that if the string is not matched, it will
behave like a context which only belongs to the universal context set “ALL”.

Contexts are loaded by parsing a context matrix, a data.frame with the following columns: cid
(character, required), number (numeric, required), name (character, optional) and doc (character,
required). Additional columns should represent context sets, and should be 1 if the context row is in
the set column and 0 otherwise. See loadContexts for an example. A special context with number
0 and cid “*INITIAL*” is required to represent the initial state when the player first logs into the
system. The method $addContexts() adds the contexts in the matrix to the system. The method
$clearContexts() removes existing contexts.

A typical initialization has the following steps:

1. Load the context set from a datafile: conMat <- read.csv(filename).

2. Create the initial context: initCon <- data.frame(CID="*INITIAL*", Name="*INITIAL*",
Number=0).

EIEngine-class 43

3. Clear Old contexts: eng$clearContexts().

4. Load context mattrix: eng$addContexts(conMat).

5. Load initial context: eng$addContexts(initCon).

Status and Default Status

The $userReocrds field of the engine points to a UserRecordSet collection. This is a set of Status
records for the students. Once again, it is stored in the database to give the status persistence across
invocations of the engine.

The method $getStatus() fetches a status from the database for the specified user. If no status is
found, then the method $newUser() is called to create the inital status. This will look for a status
for a user called “*DEFAULT*”, and will copy that status if available. Otherwise, a blank status
(one with the timers, flags and obsservables fields empty.

The method $saveStatus() saves the status back to the database. Note that the return value should
be captured, as this will update the _id (see m_id) field of the record. The method $clearStatusRecords(clearDefault)
will remove old status records, so that all players start fresh. With the argument set to true, it will
also remove the default record.

The following steps can be used to set up the default record.

1. Clear old records including default: eng$clearStatusRecords(TRUE).

2. Create a new blank status: defaultRec <- eng$newUser("*DEFAULT*").

3. Initialize fields on that record:

• Flag: flag(defaultRec, name) <- value.

• Observable: obs(defaultRec, name) <- value.

• Timers: timer(defaultRec, name) <- Timer(name).

4. Save it back to the database: defaultRec <- eng$saveStatus(defaultRec).

Listeners and Messages

The output of the EI process is through the Listener objects. The $listenerSet field holds an
object of class ListenerSet which in turn holds the listeners. When a trigger rule fires, the !send
predicate creates a message which is then sent to the ListenerSet though the notifyListeners
method. This, in turn, calls the receiveMessage method on each of the listeners.

If the dburi field in the ListenerSet is set, then the ListenerSet maintains a connection to the
Messages (or other named) collection in the database used by the EIEngine. In this case, all
messages are logged to this database. The listeners, in contrast, generally only record messages
whose message matches a given criteria. Many of the listeners connect to a database other than the
internal one: They could either insert messages in the queue for another process or update a record
in a database that tracks player status.

The CaptureListener is particularly useful for testing. It stores all messages in a list and has a
specific method for viewing the latest one.

44 EIEngine-class

Main Event Loop

The goal of the EIEngine is to act as a server process. It continually scans the event queue, looking
for unprocessed events. It processes the oldest unprocessed event, marks it as processed and then
looks for the next event. If no unprocessed events are found it sleeps for a bit and then tries again.
The field $waittime is the amount of time in seconds that the main loop will wait before checking
again.

The function mainLoop implements the main processing loop. Generally, it should be the last call
in a script for running the process (see EIEvent.R in the config subdirectory of the package for an
example). It terminates under one of three conditions: (1) When the event queue is empty, it checks
the $stopWhenFinished() method which checks the flag in the AuthorizedApps collection in the
Proc4 database. If the function returns false, the main loop will terminate. (2) The $processN field
is decremented with every event processed. If it is given a finite value (the default is infinity) then
it will process that many records and then stop. (3) If the $shouldHalt() method returns true, the
process stops rather than go onto the next method. (This allows for an emergency shutdown if an
error is found in the configuration).

Running mainLoop with $processN set to a positive integer is useful for testing. In one mode a
collection of events can be read into the database from a test file, then the $processN field can be
set to the number of new events (see EIEvent.R for an example). This will then run the test events
and then stop. Alternatively, $processN can be set to a number lower than the total number of
events and then the logging threshold can be set higher, or the processing can be run step by step to
isolate problematic events.

Logging and Error Handling

Logging is handled using the flog.logger framework. This provides a large number of tools
for specifying the details of the logging. The EIEngine executes the rules in the withFlogging
environment. This means that the default behavior for rules which generate errors is to log the
error and move to the next rule. The error message is also added to the event in the event database
(markAsError).

The amount of logging done, particularly the amount of detail supplied, is controled by the flog.threshold
function. The amount of detail provided at various levels is as follows:

TRACE • The results of checkCondition are reported.
• The specific rules found from each query are reported.
• A message is logged as each rule is run.

DEBUG • When an error occurs information about the state, event and rule where the error
occurred as well a stack trace are logged.

• Each event is logged as it is processed.
• Rule searches are logged and the number of rules reported.
• A message is logged when each phase starts.
• A message is logged when the context changes.

INFO Minimal information about which events are being processed is logged.

WARN and above If an error occurs the error is logged along with context information.

When running the EIEngine as a server, generally the logging should be done as a file. This can
be done by running: flog.appender(appender.file(logfile)). When running in interactive

EIEngine-class 45

mode, it may be useful to have log messages sent to both the console and the log file. The command
for this is: flog.appender(appender.file(logfile)).

Test Sets

This is mostly a placeholder for future capability. Along with the rules, which are after all a pro-
gram, there should be a test suite. The goal is to provide a collection of tests, so that the test suite
can be rerun when rules are modified, creating a unit testing facility for the EI-Event language.

This has not yet been implemented, but the function testRuleScript provides a mechanism for
writing test scripts.

Tracing

The EIEngine uses the flog.logger system. In particular, setting the threshold for the “EIEvent”
logger, will change the amount of information sent to the log file.

Fields

app: Object of class character. This is the long url-like name of the application. Note that it is a
key to all of the database lookup.s

dburi: Object of class character giving the URI for the link to the Mongo database

dbname: Object of class character giving the name of the user database

admindbname: Name of the database which contains the AuthorizedApps collection used to start
and stop the engine.

adminDB: Object of class MongoDB referencing the AuthorizedApps collection used to start and
stop the engine. This field should not be referenced directly, instead, the $admindb() should
be used as it will initialize the connection if needed.

waittime: The number of seconds to wait before rechecking the queue when it is empty.

userRecords: Object of class UserRecordSet giving the user record set for the applcation.

rules: Object of class RuleTable giving the rule set for the application

contexts: Object of class ContextSet giving the set of contexts supported by the application.

events: Object of class MongoDB a mongo DB connection which allows access to events. Note that
this is created when first requested, so should be accessed using the eventsdb() method.

ruleTests: Object of class TestSet give a collection of tests for the rule system.

listenerSet: Object of class ListenerSet giving the registered listeners for messages sent by
the system.

processN: An integer counting how many events the mainLoop should process before stopping. If
infinite, the main loop will not stop until the authorized app flag is cleared.

Class-Based Methods

initialize(app, listenerSet, dburi, dbname, admindbname, waittime, processN, ...):
This method sets up the object. Note that the listeners object is passed in as an argument, as
are the database credentials.

46 EIEngine-class

admindb(): Returns a handle to the AuthorizedApps collection in the Proc4 database. Initializes
if needed.

isActivated(): Returns true if the active flag is set on this applicaiton (app) in the AuthorizedApps
collection.

activate(): Sets the active flag to true for this app in the AuthorizedApps collection.

deactivate(): Clears the active flag to true for this app in the AuthorizedApps collection.

shouldHalt(): This function checks the database to see whether or not the flag is set to cause the
process to halt after processing the current record..

stopWhenFinished(): This function checks the database to see whether or not the flag is set to
cause the process to stop when the event queue is empty.

show(): Provides a short string identifying the engine.

newUser(uid): Generates a new student record. (Call to UserRecordSet$newStudent())

getStatus(uid): Feteches the current status for a student from the database. (Call to UserRecordSet$getStatus())

saveStatus(state): Saves an updated status to the database. (Call to UserRecordSet$saveStatus())

clearStatusRecords(clearDefault): Clears the status records, including the default record if
the argument is TRUE. (Call to UserRecordSet$clearAll()).

getContext(id): This is a call to matchContext.

addContexts(conmat): This is a call to loadContexts.

clearContexts(): This is a call to ContextSet$clearAll().

eventdb(): This returns the event database handle, creating it if it is not yet created. It is recom-
mended to use this method rather than access the slot directly.

setProcessed(mess): This sets the processed flag on its argument and updates the database.

setError(mess,e): This sets the processingError flag on mess to e and updates the database..

fetchNextEvent(): This returns the unprocessed event with the oldest timestamp, or NULL if
there are no unprocessed events.

findRules(verb, object, context, phase=NULL): This function finds the potentially applica-
ble for the current verb, object, context and phase. If phase==NULL, the get rules for all
phases.

loadRules(rlist, stopOnDups): This function loads rules into the rule table using loadRulesFromList.

loadAndTest(script, stopOnDups): This function loads rules into the rule table from test scripts
using testAndLoad.

Note

A different EIEninge process is associated with each application (application ID), so different ap-
plicaitons can run in parallel. More sophisticated concurancy checking is not currently available.

Author(s)

Russell Almond

EITest-class 47

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

There is a “quick start” document which describes how to set up the engine. This is available at
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf.

See Also

The function EIEngine tells about the construction and the relationship between the Engine and the
database.

The primary classes in the EIEvent system are: EIEngine, Context, Status, Event, Rule.

The EIEngine class is a container for the following classes: UserRecordSet, RuleTable, ContextSet,
TestSet and ListenerSet,

flog.logger

Examples

showClass("EIEngine")

EITest-class Class "EITest"

Description

An object describing a test case for a certain evidence identification system. It describes the input
state, the event and the target output state so that the interaction of the rules can be checked.

Objects from the Class

An EITest object consists of a test. The test case has an initial Status, a triggering Event, and
an expected result Status. If the goal is intead to check output messages, the result can be a
P4Message or a list of such messages.

Objects can be created by calls of the form EITest(...), or from JSON through parseEITest.

Slots

_id: Object of class "character", the internal mongo identifier.

app: Object of class "character", the unique identifier for the application to which this belongs.

name: Object of class "character", a human readable name for the test, used in reporting.

doc: Object of class "character", a documentation string describing the test.

initial: Object of class Status which describes the initial state of the system before the test.

event: Object of class Event which describes the incoming event to which the system is reacting.

final: Object of class Status which describes the expected final state of the system after applying
the rules, or an object of class P4Message describing the generated message.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf

48 Event

Methods

as.jlist signature(obj = "EITest", ml = "list"): helper function for converting the test into a
JSON object, see as.json.

doc signature(x = "EITest"): Returns the documenation string.

event signature(x = "EITest"): Returns the triggering event for the test.

final signature(x = "EITest"): Returns the expected final state of the system.

initial signature(x = "EITest"): Returns the initial state of the test.

name signature(x = "EITest"): Returns the name of the test.

show signature(object = "EITest"): Displays the rule object.

toString signature(x = "EITest"): Returns a string describing the rule.

Author(s)

Russell G. Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

The functions EITest and parseEITest are used to construct the rule.

The functions name, doc, initial, event, and final access the components of the test.

The TestSet maintains a collection of tests for a particular application.

Examples

showClass("EITest")

Event Event object constructor

Description

The Event funciton is the constructor for the Event object. As Event objects are usually read from
a database or other input stream, the parseEvent function is recreates an event from a JSON list.

Usage

Event(uid, verb, object = "", timestamp = Sys.time(), details = list(),
app = "default", context = "", processed = FALSE)

parseEvent(rec)
S4 method for signature 'Event,list'
as.jlist(obj, ml, serialize = TRUE)

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

Event 49

Arguments

uid A character scalar identifying the examinee or player.

verb A character scalar identifying the action which triggered the event.

object A character scalar identifying the direct object of the verb.

timestamp An object of class POSIXt which provides the time at which the event occurred.

details A named list of detailed data about the the event. The available fields will de-
pend on the app, verb and object.

app A character scalar providing a unique identifier for the application (game or
assessment). This defines the available vocabulary for verb and object, as well
as the set of applicable Rule objects.

context A character string describing the task, item or game level during which the event
occurred. It could be blank if the context needs to be figured out from surround-
ing events.

processed A logical flag. Set to true after the event has been processed by the EIEngine.

rec A named list containing JSON data.

obj An object of class Event to be encoded.

ml A list of fields of obj. Usually, this is created by using attributes(obj).

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

Most of the details about the Event object, and how it works is documented under Event-class.

The function as.jlist converts the obj into a named list. It is usually called from the function
as.json.

The parseEvent function is the inverse of as.jlist applied to an event object. It is designed to be
given as an argument to getOneRec and getManyRecs.

Value

The functions Event and parseEvent return objects of class event. The function as.jlist pro-
duces a named list suitable for passing to toJSON.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the JSON layout of the
Event objects. https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

50 Event

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

Betts, B, and Smith, R. (2018). The Leraning Technology Manager’s Guid to xAPI, Second Edition.
HT2Labs Research Report: https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/
#gf_26.

HT2Labs (2018). Learning Locker Documentation. https://docs.learninglocker.net/welcome/.

See Also

Event describes the event object.

buildMessage and as.json describe the JSON conversion system. In particular, as Event extends
P4Message, the Event method for as.jlist calls the P4Message method.

The functions getOneRec and getManyRecs use parseEvent to extract events from a database.

Examples

ev1 <- Event("Phred","test","message",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list("list"=list("one"=1,"two"=1:2),"vector"=(1:3)))

ev2 <- Event("Phred","wash","window",
timestamp=as.POSIXct("2018-12-21 00:02:01"),
details=list(condition="streaky"))

ev3 <- Event("Fred","open","can",
timestamp=as.POSIXct("2018-12-21 00:03:01"),
details=list(lidOn=FALSE))

ev1a <- parseEvent(ununboxer(as.jlist(ev1,attributes(ev1))))
ev2a <- parseEvent(ununboxer(as.jlist(ev2,attributes(ev2))))
ev3a <- parseEvent(ununboxer(as.jlist(ev3,attributes(ev3))))

stopifnot(all.equal(ev1,ev1a), all.equal(ev2,ev2a), all.equal(ev3,ev3a))

Not run: #Requires test DB setup.
testcol <- mongolite::mongo("Messages",

url="mongodb://test:secret@127.0.0.1:27017/test")
Mongodb is the protocol
user=test, password =secret
Host = 127.0.0.1 -- localhost
Port = 27017 -- Mongo default
db = test
collection = Messages
testcol$remove('{}') ## Clear everything for test.

ev1 <- saveRec(ev1,testcol)
ev2 <- saveRec(ev2,testcol)
ev3 <- saveRec(ev3,testcol)

https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://docs.learninglocker.net/welcome/

Event-class 51

ev1b <- getOneRec(buildJQuery("_id"=ev1@"_id"),testcol,parseEvent)
ev23 <- getManyRecs(buildJQuery("uid"="Phred"),testcol,parseEvent)
stopifnot(all.equal(ev1,eb1b), length(ev23)==2L)

End(Not run)

Event-class Class "Event"

Description

This class represents a generalize event happening in a simulation or a game. All events have
common metadata which identify what happened (verb), what was effected (object), the time of
the action (timestamp) as well as the application app and user (uid). However, the details field
of the event will differ dependiing on the app, verb, and object.

Objects from the Class

Objects can be created by calls the the Event function, although more typically they are passed to
the EIEngine by the presentation process.

The event object is a simplifcation of the xAPI events (Betts and Ryan, 2018). In particular, in the
xAPI format, both the verb and object fields are complex objects which have a long URL-like
identifier to make sure they are unique across applications. In the EIEvent prototocl, only the app
field is given a long URL-like name. The application should define the acceptable vocabulary for
verbs and objects, which should correpsond to the verb and object fields of the Rule objects.

Slots

verb: Object of class "character" which provides an identifier for the action which just occurred.

object: Object of class "character" which provides an identifier for the direct object of the action
which just occured.

_id: Object of class "character" the Mongo database identifier; this should not be modified.

app: Object of class "character" a unique identifier for the application. This defines which
EIEngine is used to handle the event.

uid: Object of class "character" identifier for the user (student or examinee).

context: Object of class "character" an identifier for the context, for applications in which the
context is determined by the presentation process.

sender: Object of class "character" the name of the process which generated the event, usually
the presentation process.

mess: Object of class "character" a title for the message, used by the P4Message dispatch system.

timestamp: Object of class "POSIXt" giving the time at which the event occurred.

data: Object of class "list" giving the contents of the message. This will be details specific to
the verb and object.

52 Event-class

Extends

Class "P4Message", directly. All fields except verb and object are inherited from the parent.

Note that the Event is the basic message sent from the presentation process to the evidence identifi-
cation process in the four-process architecture (Almond, Steinberg and Mislevy, 2002). It has been
extended slightly, borrowing (and simplifying) the verb and object header fields from the xAPI
format (Almond, Shute, Tingir, and Rahimi, 2018).

Note that Physics Playground uses a slightly different architecture. The presentation uses Learn-
ing Locker (HT2Labs, 2018) to log events in the xAPI format into a mongo database. When the
game level completes, a message is sent to the EIEngine which extracts the relevant messages from
the Learning Locker database and simplifies them into the event format.

Methods

as.jlist signature(obj = "Event", ml = "list"): ...

object signature(x = "Event"): Fetches the object component.

verb signature(x = "Event"): Fetches the verb component.

show signature(object = "Event"): Prints event object.

toString signature(x = "Event"): Produces <> representation of object.

all.equal.Event (target, current, ..., checkTimestamp=FALSE, check_ids=TRUE): (S3 method)
Checks for equality. The checkTimestamp flag controls whether or not the timestamp is
checked. The check_ids flag controls whether or not the database IDs are checked.

Author(s)

Russell Almond

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

Betts, B, and Smith, R. (2018). The Leraning Technology Manager’s Guid to xAPI, Second Edition.
HT2Labs Research Report: https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/
#gf_26.

HT2Labs (2018). Learning Locker Documentation. https://docs.learninglocker.net/welcome/.

See Also

The event class is a subclass of P4Message.

Other classes in the EIEvent system: EIEngine, Context, Status, Rule.

Methods for working with events: Event, parseEvent

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://docs.learninglocker.net/welcome/

executePredicate 53

Examples

showClass("Event")

executePredicate Executes the predicate of an EIEvent Rule.

Description

An Rule object contains a list of Predicates. The name of each condition is the name of an operator
and its value is a list giving the field of the Status object to be modified as a name and a new value as
the value. For example, "!incr"=c("state.flags.agentCount"=1) would increment the agent
count flag by one. The value can also be a reference to fields in the Status or Event object.
For example, "!set"=c("state.observables.trophy" = "event.data.trophy") would set the
value of the trophy observable to the value of the trophy datum in the event.

Usage

executePredicate(predicate, state, event)

Arguments

predicate A named list of actions: see details.
state An object of class Status to be modified
event An object of class Event which will be referenced in setting the values.

Details

The predicate of a Rule is a list of actions to be taken when the rule is satisfied. Each action has the
following form:

!op=list(field=arg,...)

Here, field is an identifier of a field in the Status object being modified (the Event fields cannot be
modified). This is in the dot notation (see setJS). The setting operator, !op is one of the operators
described in Predicates. For the "!set" operator, the arg is the replacement value or field reference
that the field will be used as the replacement value. Most of the other operators use arg to modify
the value of field and then replace the value of field with the result. For example, the "!incr"
operator acts much like the C += operator. The ... represents additional field–arg pairs to be set.

The arg can be a literal value (either scalar or vector) or a reference to another field in the Status
or Event object using the dot notation. Note that certain operations on timers use the timestamp
field of the Event to update the timer.

In general, a predicate contains a list of actions. These are executed sequentially, but no guarentees
are made about the order.

Finally, one special operator allows for expansion. For the "!setCall" operator, arg should be
the name of a function, with arguments (name, state, event), where name is the name of the
target field, and state and event are the current state and event objects. The value is set to the value
returned.

See Predicates for more details.

54 executePredicate

Value

The function executePredicate returns the modified status object.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

Rule describes the rule object and Predicates describes the conditions. Conditions describes the
condition part of the rule, and checkCondition checks the conditions.

The functions testPredicate and testPredicateScript can be used to test that rule conditions
function properly.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

st <- Status("Phred","Level 1",timerNames=c("learningsupports"),
flags=list(lastagent="lever",agentlist=c("lever"),

noobj=7,noagents=0),
observables=list(),
timestamp=as.POSIXct("2018-12-21 00:01"))

ev <- Event("Phred","test","message",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list(agent="lever"))

Set a flag and an observable.
st1 <- executePredicate(list("!set"=list("state.flags.agent"="ramp",

"state.observables.trophy"="gold")),st,ev)
stopifnot(getJS("state.flags.agent",st,ev)=="ramp",

getJS("state.observables.trophy",st,ev)=="gold")

Set a timer
st1 <- executePredicate(list("!set"=

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

executePredicate 55

list("state.timers.learningsupports.time"=
as.difftime(0,units="secs"),
"state.timers.learningsupports.run"=TRUE)),

st,ev)
stopifnot(

timerRunning(st1,"learningsupports",as.POSIXct("2018-12-21 00:01:01")),
timerTime(st1,"learningsupports",as.POSIXct("2018-12-21 00:01:11"))==
as.difftime(10,units="secs"))

Delete fields
st1 <- executePredicate(

list("!unset"=list("state.flags.noobj"="NA", # Set to NA
"state.flags.lastagent"="NULL", # Set to NULL
"state.flags.noagents"="Delete")), # Delete it.

st,ev)
stopifnot(is.na(flag(st1,"noobj")),is.null(flag(st1,"lastagent")),

is.null(flag(st1,"noagents")))

Modify fields.
st1 <- executePredicate(

list("!incr" = list("state.flags.noagents"=1,
"state.timers.learningsupports"=
as.difftime(1,units="mins"))),

st,ev)
stopifnot(flag(st1,"noagents")==1,

timerTime(st1,"learningsupports",as.POSIXct("2018-12-21 00:01:11"))==
as.difftime(60,units="secs"))

st2 <- executePredicate(
list("!decr" = list("state.flags.noagents"=1,

"state.timers.learningsupports"=
as.difftime(30,units="secs"))),

st1,ev)
stopifnot(flag(st2,"noagents")==0,

timerTime(st2,"learningsupports",as.POSIXct("2018-12-21 00:01:11"))==
as.difftime(30,units="secs"))

st1 <- executePredicate(
list("!mult" = list("state.flags.noobj"=2)),st,ev)

stopifnot(flag(st1,"noobj")==14)
st2 <- executePredicate(

list("!div" = list("state.flags.noobj"=2)),st1,ev)
stopifnot(flag(st2,"noobj")==7)

st1 <- executePredicate(
list("!min" = list("state.flags.noobj"=5)),st,ev)

stopifnot(flag(st1,"noobj")==5)
st1 <- executePredicate(

list("!max" = list("state.flags.noagents"=1)),st,ev)
stopifnot(flag(st1,"noagents")==1)

56 executePredicate

Set operators
st1 <- executePredicate(

list("!addToSet" =list("state.flags.agentlist"="lever")),st,ev)
stopifnot(flag(st1,"agentlist")=="lever")
st2 <- executePredicate(

list("!addToSet" =list("state.flags.agentlist"="springboard")),st1,ev)
stopifnot(setequal(flag(st2,"agentlist"),c("lever","springboard")))

st3 <- executePredicate(
list("!pullFromSet" =list("state.flags.agentlist"="lever")),st2,ev)

stopifnot(flag(st3,"agentlist")=="springboard")

st1 <- executePredicate(
list("!push"=list("state.flags.objects"="Object 1")), st,ev)

stopifnot(flag(st1,"objects")=="Object 1")

st2 <- executePredicate(
list("!pop"=list("state.flags.objects"="state.flags.lastObject")),st1,ev)

#Pop first object off the stack and set lastObject to its value.
stopifnot(flag(st2,"lastObject")=="Object 1",

length(flag(st2,"objects"))==0L)

myOp <- function(name,state,event) {
return(getJS("state.flags.noobj",state,event)/

as.double(getJS("state.timers.learningsupports.time",state,event),
units="mins"))

}

st1 <- executePredicate(
list("!setCall"=list("state.flags.value"="myOp")),st,ev)

#Set value to return value of myOp.
stopifnot(!is.finite(flag(st1,"value")))

stx <- Status("Phred","Level 1",timerNames=c("learningsupports"),
flags=list(lastagent="lever",agentlist=c("lever"),

noobj=7,noagents=0),
observables=list(trophyHall=list(),bankBalance=0),
timestamp=as.POSIXct("2018-12-21 00:01"))

eve <- Event("001c1","initialized","newMoneyEarned",
timestamp=as.POSIXct("2019-04-29 15:34:35.761500"),
details=list(gameLevelId="Down Hill",

earningType="goldWin",
moneyEarned="20",
currentMoney="60"
), context="Down Hill")

stx1 <- executePredicate(
list("!set"=list("state.observables.bankBalance"=

"event.data.currentMoney"),
"!setKeyValue"=list("state.observables.trophyHall"=

flag 57

list(key="event.data.gameLevelId",
value="event.data.earningType"))),stx,eve)

flag Accessor functions for context objects.

Description

These are basic accessor functions for the fields of an object of class Status. Note that both the
flgs and observables fields of the Status object are named lists. The functions flag(x,name)
and obs(x,name) access a single component of those objects.

Usage

flag(x, name)
S4 method for signature 'Status'
flag(x, name)
flag(x, name) <- value
S4 replacement method for signature 'Status'
flag(x, name) <- value
obs(x, name)
S4 method for signature 'Status'
obs(x, name)
obs(x, name) <- value
S4 replacement method for signature 'Status'
obs(x, name) <- value
S4 method for signature 'Status'
app(x)
S4 method for signature 'Status'
timestamp(x)

Arguments

x A Status object whose fields will be accessed.

name The name of the component for a flag or obs field.

value The replacement value for the field.

Value

The functions flag and obs return the named component of the flags or observables field of x
respectively. If no component will the given name exists, they return NULL.

The functions app, context, timestamp and oldContext return the value of the corresponding
field of x.

The setter methods return the modified Status object.

58 flag

Author(s)

Russell Almond

See Also

Status describes the state object. See context, context<-, and oldContext for other accessor
methods shared by context and other objects.

The functions setJS, getJS and removeJS provide mechanisms for accessing the fields of a status
object from Rule Conditions and Predicates.

The following functions access the timer fields of the state object. timer, timerTime, timerRunning,
setTimer

Examples

st <- Status("Phred","Level 0",timerNames="watch",
flags=list("list"=list("one"=1,"two"="too"),"vector"=(1:3)*10),
observables=list("numeric"=12.5,char="foo",

"list"=list("one"="a","two"=2),"vector"=(1:3)*100),
timestamp=as.POSIXct("2018-12-21 00:01"))

stopifnot(
uid(st) == "Phred",
context(st)=="Level 0",
oldContext(st)=="Level 0",
all.equal(flag(st,"list"),list("one"=1,"two"="too")),
all.equal(flag(st,"vector"),(1:3)*10),
all.equal(obs(st,"numeric"),12.5),
all.equal(obs(st,"char"),"foo"),
all.equal(obs(st,"list"),list("one"="a","two"=2)),
all.equal(obs(st,"vector"),(1:3)*100),
all.equal(timestamp(st),as.POSIXct("2018-12-21 00:01"))

)

context(st) <- "Level 1"
stopifnot(

context(st)=="Level 1",
oldContext(st)=="Level 0")

stopifnot(is.null(flag(st,"numeric")))
flag(st,"numeric") <- 17L
stopifnot(!is.null(flag(st,"numeric")),

flag(st,"numeric")==17L)

flag(st,"list")$two <- "two"
stopifnot(all.equal(flag(st,"list"),list("one"=1,"two"="two")))

obs(st,"vector")[2] <- 2
stopifnot(all.equal(obs(st,"vector"),c(100,2,300)))

getJS 59

getJS Gets a field from an object in Javascript notation.

Description

Fields of a Status can be accessed using JavaScript notation, e.g., state.flags.field, state.observables.field,or
state.timers.name. Similarly, fields of an Event can be referenced using event.verb, event.object,
event.data.field, or event.timestamp. The function getJS fetches the current value of the ref-
erenced field from the state or event object.

Usage

getJS(field, state, event)
getJSfield(obj,fieldlist)

Arguments

field A character scalar describing the field to be referenced (see details).

state An object of type Status giving the current status of the user in the system.

event An object of type Event giving the event being processed.

obj A collection object to be accessed. The object implmenting state.flags,
state.observables or event.details, or one of sub-components.

fieldlist The successive field names as a vector of characters (split at the ‘.’ and excluding
the initial state.flags, state.observables or event.details.

Details

Both the Conditions and Predicates of Rule objects need to reference parts of the current state
and event. As these rules are typically written in JSON, it is natural to reference the parts of the
Status and Event objects using javascript notation. Javascript, like R, is a weakly typed language,
and so javascript objects are similar to R lists: a named collection of values. A period, ‘.’, is used
to separate the object from the field name, similar to the way a ‘$’ is used to separate the field
name from the object reference when working with R lists. If the object in a certain field is itself an
object, a succession of dots. Thus a typical reference looks like: object.field.subfield and so forth as
needed.

In EIEvent rules, only two objects can be referenced: state, the current Status, and event, the
current Event. Therefore, all dot notation field references must start with either state or event.
Furthermore, Status and Event objects have only a certain number of fields so only those fields
can be referenced.

The event object has one field which can contain arbitrary collections, event.data. The state ob-
ject has two state.flags and state.observables. (The state also contains a collection of timer
objects, state.timers, which has special rules described below.) Each of these is a named collec-
tion (list in R), and components can be refenced by name. The expressions “event.data.name”,
“state.flags.name”, and “state.observables.name” reference an object named name in the

60 getJS

data field of the event, or the flags or observables field of the state respectively. Note that the avail-
able components of these lists fields will depend on the context of the simulation and the verb and
object of the event.

The fields of event.data, state.flags and state.observables could also be multipart objects
(i.e., R lists). Additional dots can be used to reference the subcomponents. Thus “event.data.position.x”
references the x-coordinate of the position object in the event data. These dots can be nested to an
aribrary depth.

The fields of event.data, state.flags. and state.observables. can also contain unnamed
vectors (either character, numeric, or list). In this case square brackets can be used to index the
elements by position. Indexes start at 1, as in R. For example, “state.flags.agentList[3]”
references the third value in the agentList flag of the status. Currently only numeric indexes are
allowed, variable references are not, nor can sublists be selected.

The function getJSfield is an internal function which is used to access components. It is called
recursively to access fields which are themselves lists or vectors.

Value

The value of getJS the the contents of the referenced field. If the referenced field does not exist, or
the reference is not well formed, then an error is signaled.

Fields of the Event object.

The following expressions reference the fields of the Event object.

• event.verb The verb associated with the current event.

• event.object The object associated with the current event.

• event.timestamp The time at which the event occurred.

• event.data.field The value of the extra data field named field.

The following additional fields can also be referenced, but are seldom used. In many cases, these
fields are handled by the EIEngine before rule processing begins, so their values are irrelevant.

• event.app The application ID associated with the current event..

• event.context The simulator context of the current event as recorded by the presentation
process.

• event.uid The user ID of the student or player.

• event.message The message sent from the presentation process. (Often something like “New
Event”.)

Fields of the Status object.

The following fields of the Status object can be referenced.

• state.context The current context that the state object is in.

• state.oldContext The the context of the state at the end of the previous event. In particular,
this can be compared to the context to check if the context has changed as a result of the event.

getJS 61

• state.observables.field The value of the observable named field.

• state.timers.field The the timer named field. Note that state.timers.field.time or .value
refers to the current elapsed time of the timer, and state.timers.field.run or .running is a
logical value which refers to whether or not the timer is running.

• state.flags.field The value of the observable named field.

The following additional fields are also recognized, but again they are primarily for use in the
EIEngine.

• state.uid The user ID of the student or player. (Should be the same of that of the event.)

• state.timestamp The timestamp of the last event encorporated into the status.

Timers

The state.timers field holds a named list of objects of class Timer. These behave as if they have
two settable subfields: running (or run) and time (or value).

The running (or run) virtual field is a logical field: TRUE indicates running and FALSE indicates
paused. Setting the value of the field will cause the timer to resume (start) or pause depending on
the value.

The time (or value) field gives the elapsed time of the timer. Setting the field to zero will reset the
timer to zero, setting it to another value will adjust the time.

Note

It is clear that some kind of indirect reference (i.e., using variables, either integer or character, inside
of the square brackects) is needed. This may be implemented in a future version.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

62 getJS

See Also

The functions setJS for setting fields and removeJS for removing fields (only allowed with state
objects). This function is called from the functions checkCondition and executePredicate.

The help files Conditions and Predicates each have detailed descriptions of rule syntax.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, Rule.

Examples

st <- Status("Phred","Level 0",timerNames="watch",
flags=list("list"=list("one"=1,"two"="too"),"vector"=(1:3)*10),
observables=list("numeric"=12.5,char="foo",

"list"=list("one"="a","two"=2),"vector"=(1:3)*100),
timestamp=as.POSIXct("2018-12-21 00:01"))

context(st) <- "Level 1"

ev <- Event("Phred","test","message",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list("list"=list("one"=1,"two"=1:2),"vector"=(1:3)))

stopifnot(
getJS("state.context",st,ev)=="Level 1",
getJS("state.oldContext",st,ev)=="Level 0",
getJS("state.observables.numeric",st,ev)==12.5,
getJS("state.observables.char",st,ev)=="foo",
all.equal(getJS("state.observables.list",st,ev),list("one"="a","two"=2)),
getJS("state.observables.list.one",st,ev)=="a",
getJS("state.observables.vector[2]",st,ev)==200,
all.equal(getJS("state.flags.list",st,ev),list("one"=1,"two"="too")),
getJS("state.flags.list.two",st,ev)=="too",
getJS("state.flags.vector[3]",st,ev)==30
)

stopifnot(
getJS("state.timers.watch.running",st,ev)==FALSE,
getJS("state.timers.watch.time",st,ev)==as.difftime(0,units="secs")
)

timerTime(st,"watch",as.POSIXct("2018-12-21 00:01")) <-
as.difftime(1,units="mins")

timerRunning(st,"watch", as.POSIXct("2018-12-21 00:01")) <- TRUE

stopifnot(
getJS("state.timers.watch.run",st,ev)==TRUE,
getJS("state.timers.watch.value",st,ev)==as.difftime(61,units="secs")
)
Note that value of a running timer references difference between
internal start time and current time as recorded by the event.

stopifnot(
getJS("event.verb",st,ev)=="test",

handleEvent 63

getJS("event.object",st,ev)=="message",
getJS("event.timestamp",st,ev)==as.POSIXct("2018-12-21 00:01:01"),
all.equal(getJS("event.data.list",st,ev),list("one"=1,"two"=1:2)),
all.equal(getJS("event.data.list.two",st,ev),1:2),
getJS("event.data.vector[3]",st,ev)==3
)

handleEvent Does the processing for a new event.

Description

This function finds the appropriate rules for handling an event then runs them. It is the core function
for the EIEngine.

Usage

handleEvent(eng, event)
processEvent(eng, state, event)

Arguments

eng An object of class EIEngine which will process the event.

state An object of class Status that will be updated by the rules processing the event.

event An object of class Event that will be processed.

Details

The function processEvent first calls eng$findRules to find rules appropriate for the event. If
no rules exist, it returns NULL (indicating that the state has not changed and does not need to be
saved.). If there are rules, then the following functions are run in sequence:

1. runStatusRules: update internal status variables (flags and timers).

2. runObservableRules: update external status variables (observables).

3. runContextRules: check to see if the context (game level) has changed.

4. runTriggerRules: run rules to general messages for other processes if necessary.

5. runResetRules: resets the state for the beginning of a new context.

It then updates the timestamp and returns the modified status. If an error occurs during any of the
steps, then an object of class try-error is returned (see withFlogging).

The function handleEvent first finds the current status for the user from the UserRecordSet linked
to the engine. It then runs processEvent, and then if necessary it saves the updated status.

64 handleEvent

Value

The function processEvent returns NULL if there were no applicable rules, an object of class
Status if the rules executed correctly and an object of class try-error if processing the rules
generated an error.

The function handleEvent returns the current Status if the handling was successful and an object
of class try-error in an error was generated.

Note

This function uses the flog.logger mechanism. The following information is reported at various
thresholds:

TRACE • The results of checkCondition are reported.
• The specific rules found from each query are reported.
• A message is logged as each rule is run.

DEBUG • When an error occurs information about the state, event and rule where the error
occurred as well a stack trace are logged.

• Each event is logged as it is processed.
• Rule searches are logged and the number of rules reported.
• A message is logged when each phase starts.
• A message is logged when the context changes.

INFO and above If an error occurs the error is logged along with context information.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

Conditions and Predicates each have detailed descriptions. The functions checkCondition and
executePredicate run the condition and predicate parts of the rule. The functions runRule and
runTRule run the indivual rules, and the functions runTriggerRules, runStatusRules, runObservableRules,
runResetRules, and runContextRules run sets of rules.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

handleEvent 65

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly. The functions testPredicate and testPredicateScript can be used to test that predi-
cates function properly. The functions testRule and testRuleScript can be used to test that rule
conditions and predicates function properly together. The class RuleTest stores a rule test.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

Not run:
app <- "ecd://epls.coe.fsu.edu/P4test"
loglevel <- "DEBUG"
cleanFirst <- TRUE
eventFile <- "/home/ralmond/Projects/EvidenceID/c081c3.core.json"
Adjust the path here as necessary
source("/usr/local/share/Proc4/EIini.R")
flog.appender(appender.file(logfile))
flog.threshold(loglevel)

Setup Listeners
listeners <- lapply(names(EI.listenerSpecs),

function (ll) do.call(ll,EI.listenerSpecs[[ll]]))
names(listeners) <- names(EI.listenerSpecs)
if (interactive()) {

cl <- new("CaptureListener")
listeners <- c(listeners,cl=cl)

}
EIeng.params <-

c(EI.config$EIEngine,
EIeng.local[setdiff(names(EIeng.local),names(EI.config$EIEngine))])

EIeng.params$listenerSet <-
ListenerSet(sender= sub("<app>",sapp,EI.config$sender),

dbname=EIeng.local$dbname, dburi=EIeng.local$dburi,
listeners=listeners,
colname=EI.config$lscolname)

EIeng.params$app <- app

Make the EIEngine
eng <- do.call(EIEngine,EIeng.params)

Process Event file if supplied
if (!is.null(eventFile)) {

system2("mongoimport",
sprintf('-d
stdin=eventFile)

Count the number of unprocessed events
NN <- eng$eventdb()$count(buildJQuery(app=app(eng),processed=FALSE))

}

for (n in 1L:NN) {
eve <- eng$fetchNextEvent()
out <- handleEvent(eng,eve)

66 loadContexts

eng$setProcessed(eve)
}

End(Not run)

loadContexts Loads a set of contexts from a matrix description

Description

The easiest way to load a set of Context objects is from a matrix of cross references. There are
columns corresponding to the fixed fields of the context object (cid,number, name and doc). The
other columns are logical variables that refer to context sets, which take on a true value when the
context represented by the row belongs to the set represented by the column.

Usage

loadContexts(conmat, set, app)

Arguments

conmat A matrix representing a collection of contexts, see details.

set Either a ContextSet object, or a list to which the new contexts will be added.

app A character scalar giving the name of the application; used in constructing the
contexts.

Details

A context matrix is a data.frame with the following columns: cid (character, required), number
(numeric, required), name (character, optional) and doc (character, required). The cid and number
fields should also be unique across all the entries as they serve as indexes for the ContextSet object.
The name column if omitted defaults to the cid (the difference is that the name is designed to be
more human readable). The doc if omitted produces an empty documentation string. The remaining
columns are logical and are indicators for set membership.

The following is an example context matrix:

cid number name doc Set1 Subset1.1 Set2
[,1] Set1 -100 "Set 1" "A context set" 0 0 0
[,2] Subset1.1 -110 "Subet 1.1" "A subset of Set 1" 1 0 0
[,3] Set2 -200 "Set 2" "Another context set" 0 0 0
[,4] Task1 100 "First Task" "A task beloning to Set 1" 1 0 0
[,5] Task1a 101 "First Task Variant" "A task beloning to Subet 1.1" 1 1 0
[,6] Task2 200 "Second Task" "A task beloning to Set 2" 0 0 1

A couple things to note about this matrix. First, both actual contexts and context sets are represented
(the are both represented internally by Context objects. The names of the extra columns correspond

loadContexts 67

to the names of the context sets. If the database is used to store contexts, it recommended to give
sets a negative number and actual contexts positive numbers. If a list is used, then the numbers need
to be list indexes, and so should be low numbers.

Also, the belongsTo relationship is not transitive (or at least the transitive implications are not
computed), so Task1a must have both set and subset memebership defined.

The code loops through the rows of the table, and creates a new context for each row. This is then
added to the set argument. If an existing context of the same cid and number exists, it is replaced,
otherwise a new one is added. If the context is replacing an old one, the old one should have both
the same name and number as the replacement. The method for updateContext for a ContextSet
object (called by loadContexts) checks for this inconsistency; the list method does not.

The matrix is to represent the entire context set, calling clearContexts before loading the matrix
should eliminate conflicts.

Value

The modified set argument is returned. This is either a list or a ContextSet.

Note

The ContextSet class is a reference class. Therefore, this function destructively modifieds the
database associated with the set.

The list is an ordinary R functional class, and the function behaves in a functional manner when
called with a list as a set.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the context system: https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

Context describes the context object, and ContextSet describes the context set object.

The functions matchContext, updateContext and clearContexts are used to manipulate context
sets.

Examples

Not run: # Requires Mongo DB
conmat <- read.csv(file.path(library(help="EIEvent")$path,"testScripts",

"SampleContextSheet.csv"))

conmat1 <- conmat
conmat1$Number <- 1:nrow(conmat) ## List style needs small integer indexes.
setlist <- loadContexts(conmat1,list(),"ecd://epls.coe.fsu.edu/rga/test")
stopifnot(all.equal(names(setlist),as.character(conmat$CID)))

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

68 loadRulesFromList

testSet <- newContextSet(app="ecd://epls.coe.fsu.edu/rga/test",
dbname="test",dburi="mongodb://localhost")

clearContexts(testSet)
loadContexts(conmat,testSet,"ecd://epls.coe.fsu.edu/rga/test")
c1 <- matchContext(28L,testSet)
c2 <- matchContext("Stairs",testSet)
stopifnot(all.equal(c1,c2))

End(Not run)

loadRulesFromList Functions for loading rules into database.

Description

These functions load rules into a RuleTable (or the database for a EIEngine). The function
testAndLoad also runs the test suite as the rules are loaded.

Usage

loadRulesFromList(set, rulelist, stopOnDups = TRUE)
testAndLoad(set, filename, stopOnDups = FALSE)

Arguments

set An object of class RuleTable into which the rules will be loaded.

rulelist A list of Rule objects.

stopOnDups A logical value which controls how names with duplicate values will be treated.
If true, then an error will be signaled if the rule to be added has the same name
as one in the database. If false, the old rule will be replaced.

filename A file which contains a number of RuleTest objects in JSON format (see testRule).
The tests will be run, and if successful the rules will be extracted and loaded.

Details

The loadRulesFromList function is more often called from the $loadRules() method of the
EIEngine class. The easiest way to maintain the rules is by a series of one or more JSON files.
These can be read using:

rulelist <- lapply(jsonlite::fromJSON("rulefile.json",FALSE), parseRule)

With stopOnDups==FALSE, the functions will issue warnings when they are replacing rules, espe-
cially if the versions are different. However, it is probably easier to first clear out the old rules when
replacing the rules. This can be done with the $clearAll() method of the RuleTable class or the
the $clearAllRules() method of the EIEngine class.

The testAndLoad variant is not yet fully tested, but the idea is that the file would be a test script
of the kind that could be tested with testRuleScript. It will run the tests, and load the rules only

mainLoop 69

if the tests pass. (Note that as a rule could have multiple tests, it will be loaded if any of the tests
pass.)

Value

Both of these function return the set argument invisibly.

Note

The testAndLoad variant is not fully tested.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

There is a “quick start” document which describes how to set up the engine. This is available at
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf.

See Also

See Rule and parseRule for the rule object. See RuleTable for the rule collection object and
EIEngine for the full engine.

Examples

Not run:
rls <- RuleTable$new("ecd://epls.coe.fsu.edu/P4test","test",

"mongodb://localhost")
sRules <- lapply(jsonlite::fromJSON(file.path(config.dir, "Rules",

"CombinedRules.json"),FALSE),
parseRule)

rls$clearAll()
loadRulesFromList(rls,sRules)

End(Not run)

mainLoop Runs the EIEngine as a server.

Description

The mainLoop is used when the EIEngine is used as a server. It checks the database, for unpro-
cessed Event objects, and calls handleEvent on them in the order of their timestamps. As a server,
this is potentially an infinite loop, see details for ways of gracefully terminating the loop.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf

70 mainLoop

Usage

mainLoop(eng)

Arguments

eng An instance of EIEngine which will be used as a server.

Details

The EIEngine class uses the Events collection in the database (eng$eventdb()) as a queue. All
events have a processed field which is set to true when the event is processed. Thus the main loop
iterates over the following three statements:

1. Fetch the oldest unprocessed Event: eve <- eng$fetchNextEvent().

2. Process the event: out <- handleEvent(eng,eve). (Note: this expression will always return.
If it generates an error, the error will be logged and an object of class try-error will be
returned.)

3. Mark the event as processed: eng$setProcessed(eve).

At its simplest level, the funciton produces an infinite loop over these three statements, with some
additional steps related to logging and control.

Before processsing the next field, the mainLoop checks the eng$shouldHalt() method to see if a
halt signal has been sent (by setting the EIsignal field in the AuthorizedApps collection to “halt”).

If the event queue is empty, the process sleeps for a time given by eng$waittime and then checks
the queue again. At the same time, it checks status of the active flag for the process using the
eng$stopWhenFinished() call. By default this checks the EIsignal field of the record corre-
sponding to app(eng) in the collection AuthorizedApps in the database Proc4. Setting that field
to “finish” manually will result in the mainLoop terminating when the queue is empty. As R is
running in server mode when this happens, this often needs to be done using an external process.
The following command issues from the Mongo shell will shut down the server for an application
containing the string "appName" as part of its name.

db.AuthorizedApps.update({app:{$regex:"appName"}}, {$set:{EIsignal:"finish"}});

To facilitate testing, the field eng$processN can be set to a finite value. This number is decremented
at every cycle, and when it reaches 0, the mainLoop is terminated, whether or not their are any
remaining events to be processed. Setting eng$processN to an infinite value, will result in an
infinite loop that can only be stopped by using the active flag (or interrupting the process).

Value

There is no return value. The function is used entirely for its side effects.

Author(s)

Russell Almond

mainLoop 71

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

There is a “quick start” document which describes how to set up the engine. This is available at
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf.

See Also

The class EIEngine describes the setup of the engine, and the function handleEvent describes the
processing that occurs for each event.

Examples

Not run:
From EIEvent.R script
app <- "ecd://epls.coe.fsu.edu/P4test"
loglevel <- "DEBUG"
cleanFirst <- TRUE
eventFile <- "/home/ralmond/Projects/EvidenceID/c081c3.core.json"

Initialization details (from EIini.R script)
EIeng.common <- list(host="localhost",username="EI",password="secret",

dbname="EIRecords",P4dbname="Proc4",waittime=.25)
appstem <- basename(app)
EIeng.params <- list(app=app)
logfile <- file.path("/usr/local/share/Proc4/logs",

paste("EI_",appstem,"0.log",sep=""))
EI.listenerSpecs <-

list("InjectionListener"=list(sender=paste("EI",appstem,sep="_"),
dbname="EARecords",dburi="mongodb://localhost",
colname="EvidenceSets",messSet="New Observables"))

Setup logging
if (interactive()) {

flog.appender(appender.tee(logfile))
} else {

flog.appender(appender.file(logfile))
}
flog.threshold(loglevel)
Setup Listeners
listeners <- lapply(names(EI.listenerSpecs),

function (ll) do.call(ll,EI.listenerSpecs[[ll]]))
names(listeners) <- names(EI.listenerSpecs)
if (interactive()) {

cl <- new("CaptureListener")
listeners <- c(listeners,cl=cl)

}
EIeng.params <-

c(EI.config$EIEngine,
EIeng.local[setdiff(names(EIeng.local),names(EI.config$EIEngine))])

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/EIQuickStart.pdf

72 matchContext

EIeng.params$listenerSet <-
ListenerSet(sender= sub("<app>",sapp,EI.config$sender),

dbname=EIeng.local$dbname, dburi=EIeng.local$dburi,
listeners=listeners,
colname=EI.config$lscolname)

EIeng.params$app <- app

Make the EIEngine
eng <- do.call(EIEngine,EIeng.params)

Clean out old records from the database.
if (cleanFirst) {

eng$eventdb()$remove(buildJQuery(app=app(eng)))
eng$userRecords$clearAll(FALSE) #Don't clear default
eng$listenerSet$messdb()$remove(buildJQuery(app=app(eng)))
for (lis in eng$listenerSet$listeners) {

if (is(lis,"UpdateListener") || is(lis,"InjectionListener"))
lis$messdb()$remove(buildJQuery(app=app(eng)))

}
}
Process Event file if supplied
if (!is.null(eventFile)) {

system2("mongoimport",
sprintf('-d
stdin=eventFile)

Count the number of unprocessed events
NN <- eng$eventdb()$count(buildJQuery(app=app(eng),processed=FALSE))

}
if (!is.null(eventFile)) {

This can be set to a different number to process only a subset of events.
eng$processN <- NN

}
Activate engine (if not already activated.)
eng$activate()
mainLoop(eng)

Depending on value of NN, this may not terminate!

End(Not run)

matchContext Find or replace contexts in a context set

Description

The function matchContext finds a context by string or numeric id. The function updateContext
adds a new context to a set or replaces an existing one (see details). The function clearContext
clears all contexts associated with this application.

matchContext 73

Usage

matchContext(id, set)
S4 method for signature 'character,ContextSet'
matchContext(id, set)
S4 method for signature 'numeric,ContextSet'
matchContext(id, set)
S4 method for signature 'character,list'
matchContext(id, set)
S4 method for signature 'numeric,list'
matchContext(id, set)
updateContext(con, set)
S4 method for signature 'Context,ContextSet'
updateContext(con, set)
S4 method for signature 'Context,list'
updateContext(con, set)
clearContexts(set)
S4 method for signature 'ContextSet'
clearContexts(set)
S4 method for signature 'list'
clearContexts(set)

Arguments

id This should be either a character or numeric scalar giving the cid or number of
the desired context.

con This should be an object of type Context to be added or replaced.

set This should either be an object of type ContextSet or a list.

Details

The functions are for manipulating collections of contexts. The robust way to implement a context
set is to use the ContextSet class, which is an interface to database with dual indexes: one on cid
and app and one on number and app. Thus each application maintains its own set of contexts in the
same database.

A lightweight implementation can be made using a list with names corresponding to the cid and
position in the list corresponding to number. This representation is primarily intended for testing.

The function matchContext is polymorphic on both its arguments. If the first argument is character,
it searches based on context id, if the first argument is numeric, it searches based on numeric id
(position in the list if the second argument is a list). If no matching context is found, it returns NULL.
If the set is a ContextSet successes are logged at the DEBUG level, and failures at the INFO level.

The function updateContext performs a database update operation, that is it replaces the context
in the set if it already exists, or adds the context to the set if it does not. If the set is a ContextSet
it first checks for an existing context with that character and numeric id. If such a context exists
it is replaced; otherwise a new context is added. However, if the new character and numeric ids
reference different contexts, then a warning is logged and the contexts are not replaced. If the set
is a list, then no checking is done. The context at the given numeric location is replaced and given
the new name. This may produce errors or an inconsistent state.

74 matchContext

The function clearContexts removes all of the contexts. In the case of the list, it merely returns
an empty list. In the case of the ContextSet it removes all contexts with the application id of the
set. Other applications should remain untouched.

Value

The function matchContext returns an object of class Context if a class was found and NULL
otherwise.

The functions updateContext and clearContexts return the (modified) set argument.

Note

Note that these functions obey functional or reference semantics depending on the set argument.
As ContextSet is a reference class, these functions modify the database and hence the results are
propagated. However, if set is a list, then normal functional semantics are used, and the resulting
modified list needs to be stored in an environment to make the modification permanent.

Author(s)

Russell Almond

See Also

Context, ContextSet, loadContexts

Examples

Not run: # Requires Mongo DB
conmat <- read.csv(file.path(library(help="EIEvent")$path,"testScripts",

"SampleContextSheet.csv"))

conmat1 <- conmat
conmat1$Number <- 1:nrow(conmat) ## List style needs small integer indexes.
setlist <- loadContexts(conmat1,list(),"ecd://epls.coe.fsu.edu/rga/test")
stopifnot(all.equal(names(setlist),as.character(conmat$CID)))

matchContext(3L,setlist)
matchContext("Stairs",setlist)

testSet <- newContextSet(app="ecd://epls.coe.fsu.edu/rga/test",
dbname="test",dburi="mongodb://localhost")

clearContexts(testSet)
loadContexts(conmat,testSet,"ecd://epls.coe.fsu.edu/rga/test")
matchContext(28L,testSet)
matchContext("Stairs",testSet)

End(Not run)

Predicates 75

Predicates Functions that modify state when rule is triggered.

Description

A Rule contains both Conditions and Predicates. The latter is a list of operations which are run
when the conditions are satisfied. The list of predicates has the form !op=list(target=arg,...).
Here target is a reference to a field in the Status object which is modified by applying the !op to
the current value of the target and the arg.

Usage

"!set"(predicate, state, event)
"!unset"(predicate, state, event)
"!incr"(predicate, state, event)
"!decr"(predicate, state, event)
"!mult"(predicate, state, event)
"!div"(predicate, state, event)
"!min"(predicate, state, event)
"!max"(predicate, state, event)
"!addToSet"(predicate, state, event)
"!pullFromSet"(predicate, state, event)
"!push"(predicate, state, event)
"!pop"(predicate, state, event)
"!start"(predicate, state, event)
"!reset"(predicate, state, event)
"!setKeyValue"(predicate, state, event)
"!setCall"(predicate, state, event)
"!send"(predicate, state, event)
"!send1"(predicate, state, event)
"!send2"(predicate, state, event)
modify(predicate, state, event, op)

Arguments

predicate This is a list of the form list(target1=arg1, target2=arg2, ...). It names the
fields to be modified and the new values (or arguments used to compute the new
values).

state A Status object representing the current state of the simulation.

event A Event object giving details of the current event. Used for dereferencing ref-
erences in the arg.

op A binary argument used to combine the value of the target and the arg for the
modify function.

76 Predicates

Details

The predicate of a Rule is a list of operations. Each operation has the following form:

!op=list(target=arg,...)

Here, target is an identifier of a field in the Status object being modified (targets in the Event
object cannot be modified). The target field is in the dot notation (see setJS). The query operator,
!op is one of the operations described in the section ‘Predicate Operators’. The arg is a value or
field reference that will be used in calculating the new value for the target field. In other words, the
statement is effectively of the form target !op arg. The ... represents additional target–arg pairs
to be modified.

The arg can be a literal value (either scalar or vector) or a reference to another field in the Status
or Event object using the dot notation.

In general, a predicate contains a list of operators and each operator contains a list of target=arg
pairs. These are each executed sequentially; however, the order is not guarenteed. If order is
important, use multiple rules with different priorities.

Finally, one special operator allows for expansion. For the !setCall operator, arg should be the
name of a function, with arguments (name, state, event), where name is the name of the target
field, and state and event are the current state and event objects. The value is set to the value
returned.

Value

An object of class Status with the target fields modified.

Predicate Operators

The following operators are supported:

!set This operator sets the field to the value of the argument. If the field is a flag or observable and
does not exist, it is created. If it is a timer and does not exist, an error is signaled.

!unset This is the inverse of the !set operator. If the arg in this expression is NULL, or NA, then
the field will be set to that value. If arg is “Delete”, then the field will be removed.

!incr, !decr, !mult, !div, !min, !max For all six of these, the current value of the field is re-
placed by the result of combining it with the value of the argument. The combination funcitons
are ‘+’, ‘-’, ‘*’, ‘/’, min, and max, respecitively.

!addToSet, !pullFromSet These operators assume that the value of the field is a vector represent-
ing a set. The operator !addToSet adds the argument to the set (if it is not already present),
and !pullFromSet removes the argument (if it is present).

!setKeyValue This operators assumes that the value of the field is a named list representing an
association (dictionary). The operator !setKeyValue expects its argument to have two fields:
key: and value:. The association key=value is added to the set.

!push This assumes that the field is a vector which represents a stack. The new value is pushed
onto the front of the stack.

!pop This assumes that the field is a vector which represents a stack. The first value is removed
from the stack. If the argument is a field reference, the field referenced in the argument is set
to the popped value. If the arugment is numeric, then that many values are popped off the
stack.

Predicates 77

!start, !reset In both cases, the field referenced should be a timer. With no argumets, the !start
operator sets the time value to zero and sets the timer running and !reset sets the timer to
zero and does not set it running. In both cases, if the timer of the name specified in the field
does not exist, one is created. If either is given a logical argument, then the timer is set to
running or not according to the argument, overriding the default behavior. If the operator is
given a numeric or difftime argument, then the timer is set to that time. Finally, a argument
which is a list with both a time (difftime value) and running (logical value) will put the timer
in that state.

!send, !send1, !send2 Special predicate for trigger rules which builds messages to be sent to
various listeners. The versions with the numbers are to allow for multiple messages (JSON
complains if there are two fields with the same key.) See buildMessages.

!setCall This is a trap door which allows for arbitrary R code to be used to calculate the value of
the field. The argument should be the name of a function with three arguments, the name of
the field, the status and the event. The field will be set to the value returned by the function.

Setting Timers

Note that timers (see Timer) are treated specially. Each timer has a .run (or .running) subfield
which is true if the timer is running and false if it is paused. It also has a .value (or .time) field
which represents the elapsed time.

Timers can be set using the !set operator modifies the state of the timer. Setting the .run or
.running subfield of the timer to a logical value will cause the timer to pause (FALSE) or resume
(TRUE). Setting setting the the .time or .value will set the elapsed time. Similarly, the !incr,
!decr, etc. operators can be used to change the time value.

The !start and !reset operations are synonyms for !set with some differences. First, both a
running (or run) and value (or time) can be set at the same time. If only a real or POSIXt value
is specified the it is assumed that the time should be set. If only a logical value is supplied, it is
assumed that the running state should be set. If the logical value is not supplied, it is assumed to be
TRUE for !start and FALSE for !reset. If the time value is not specified, it is assumed to be zero.

There is one important difference between the !set and the !start approach. They behave differ-
ently if the timer object is not already created in the state object. The !set operator (and related
modification operators) will signal an error. The !start and !reset operators will create a new
timer if needed.

Expansion Mechanisms

The special “!setCall” form obviously allows for expansion. It is particularly designed for value
calculations which involve multiple fields in a complex fashion.

It is also possible to expand the set of !op functions. The method used for dispatch is to call
do.call(op,list(predicate, state, event)) where predicate is a list of target=arg pairs.

The modify function is a useful tool for building new predicates. It combines the current value of
the field with the value of the arg using a specified operator. This is used to implement many of the
existing operators.

Predicate Testing

The function checkCondition is used internally to check when a set of conditions in a rule are
satisfied.

78 Predicates

The functions testPredicate and testPredicateScript can be used to test that predicates func-
tion properly. The functions testRule and testRuleScript can be used to test that rule conditions
and predicates function properly together.

Note

Don’t confuse the ‘!’ operator with the character “!” used at the start of the predicate operator
names.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

The special !send predicate (and buildMessages is documented separately).

Rule describes the rule object and Conditions describes the Conditions.

The functions testRule and testRuleScript can be used to test that rule conditions and predicates
function properly together.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

list (
Set a flag and an observable.
"!set"=list("state.flags.agent"="ramp",

"state.observables.trophy"="gold"),
Set a timer
"!set"=list("state.timers.learningsupports.time"=as.difftime(0,units="secs"),

"state.timers.learningsupports.run"=TRUE),
Delete fields
"!unset"=list("state.flags.agent"="NA", # Set to NA

"state.flags.slider"="NULL", # Set to NULL
"state.flags.unneeded"="Delete"), # Delete it.

Modify fields.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

queryResult 79

"!incr" = list("state.observables.objects"=1), # Add one to objects
"!decr" = list("state.flags.helpuse"=1, # Subtract 1 from help use.

"state.timers.learningsupport"=as.difftime(1,units="mins")),
Subract one minute from the learning support timer.

"!mult" = list("state.flags.value"=2),# Double value.
"!div" = list("state.flags.value"=2), # Halve value.
"!min" = list("state.flags.attempts"=5), # Attempts is less than 5
"!max" = list("state.flags.attempts"=0), # Attempts is at least 0

Set operators
"!addToSet" =list("state.flags.agents"="lever"), #Add lever to list of agents
"!pullFromSet" =list("state.flags.agents"="lever"),

#Remove level from agent list
"!push"=list("state.flags.objects"="Object 1"), #Put Object 1 on the stack.
"!pop"=list("state.flags.objects"="state.flags.lastObject"),

#Pop first object off the stack and set lastObject to its value.

"!setKeyValue"=
list("state.observables.trophyHall"=

list("key"="event.data.gameLevelId","value"="gold")),

Send operator
"!send" = list("mess"="Money Earned",

"context"="state.oldContext",
"data"=

list("trophyHall"="state.observables.trophyHall",
"bankBalance"="state.observables.bankBalance")),

Can't use the same operator twice in the same call.
"!send1"=list("mess"="New Observables",

"context"="state.oldContext",
"data"=list()), ## All Observables

Expansion Operator.
"!setCall"=list("state.flags.value"="myOp"))

#Set value to return value of myOp.

queryResult Accessor Functions for RuleTest objects.

Description

These are accessor functions for the components of the RuleTest class. These allow extraction but
not setting of the components.

80 queryResult

Usage

queryResult(x)
initial(x)
final(x)
event(x)
rule(x)

Arguments

x A RuleTest object whose fields are to be accessed.

Value

The function queryTest returns a logical value indicating whether or not the Conditions of the
rule should return true for this test case.

The function rule returns the Rule being tested.

The function event returns the Event being processed in the test.

The function initial returns the initial Status of the system before the test.

The function final returns the final Status of the system after the test is applied.

Author(s)

Russell Almond

See Also

RuleTest describes the rule test class and RuleTest the constructor function.

Examples

testr <- RuleTest(
name="Simple set",
doc="Demonstrate predicate test mechanism.",
initial = Status("Fred","test",
timestamp=as.POSIXct("2018-12-21 00:01:01")),

event= Event("Fred","test","rule",details=list(agent="ramp"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

rule=Rule(predicate=list("!set"=c("state.observables.rampused"=TRUE)),
ruleType="Observable"),

queryResult=TRUE,
final=Status("Fred","test",observables=list("rampused"=TRUE),

timestamp=as.POSIXct("2018-12-21 00:01:01")))

name(testr)
doc(testr)
initial(testr)
event(testr)
rule(testr)
queryResult(testr)

removeJS 81

final(testr)

removeJS Removes a field from a state object.

Description

Fields of a Status can be accessed using JavaScript notation, e.g., state.flags.field, state.observables.field,or
state.timers.name. The function removeJS sets removes the field. This function called when
the !unset operator is called with the "Delete" argument.

Usage

removeJS(field, state)
removeJSfield(target, fieldlist)

Arguments

field A character scalar describing the field to be removed (see details).
state An object of type Status giving the current status of the user in the system; this

argument will be modified.
target A collection object to be accessed. The object implmenting state.flags,

state.observables or state.timers, or one of sub-components.
fieldlist The successive field names as a vector of characters (split at the ‘.’ and excluding

the initial state.flags, state.observables or event.details.

Details

The Predicates of Rule objects update parts of the current state. As these rules are typically
written in JSON, it is natural to reference the parts of the Status objects using javascript notation.
Javascript, like R, is a weakly typed language, and so javascript objects are similar to R lists: a
named collection of values. A period, ‘.’, is used to separate the object from the field name, similar
to the way a ‘$’ is used to separate the field name from the object reference when working with R
lists. If the object in a certain field is itself an object, a succession of dots. Thus a typical reference
looks like: object.field.subfield and so forth as needed.
In EIEvent rules, only the state, the current Status, can be modified. Therefore, in the pred-
icate all dot notation field references start with state Furthermore, only elements of the collec-
tion fields of the Status (flags, observables and timers) can be referenced. The expressions
“state.flags.name”, and “state.observables.name” reference an object named name in the
flags or observables field of the state respectively.
The fields state.flags and state.observables could also be multipart objects (i.e., R lists).
Additional dots can be used to reference the subcomponents. Thus “state.flags.position.x”
references the x-coordinate of the position object in the flag field. These dots can be nested to an
aribrary depth. The function removeJSfield is a helper function used to remove components of
nested items.
The removeJS method is called by executePredicate when the argument to !unset is not NULL
or NA.

82 removeJS

Value

The setJS function always returns the modified state object. The setJSfield function returns the
modified colleciton object, or if the fieldlist is empty, NULL.

Note

It is clear that some kind of indirect reference (i.e., using variables, either integer or character, inside
of the square brackects) is needed. This may be implemented in a future version.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

The functions getJS for accessing fields and setJS for setting fields (only allowed with state ob-
jects). This function is called from executePredicate.

The help files Conditions and Predicates each have detailed descriptions of rule syntax.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, Rule.

Examples

st <- Status("Phred","Level 0",timerNames="watch",
flags=list("list"=list("one"=1,"two"="too"),"vector"=(1:3)*10,

"char"="hello"),
observables=list("list"=list("one"="one","two"=2),"vector"=(1:3),

"char"="bar"),
timestamp=as.POSIXct("2018-12-21 00:01"))

st1 <- removeJS("state.flags.char",st)
stopifnot(all("char"!=names(st1@flags)))

st1 <- removeJS("state.flags.list.two",st)
stopifnot(length(flag(st1,"list"))==1L)

st1 <- removeJS("state.observables.char",st)

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

Rule 83

stopifnot(is.null(obs(st1,"char")))

st1 <- removeJS("state.observables.list.one",st)
stopifnot(length(obs(st1,"list"))==1L)

st1 <- removeJS("state.timers.watch",st)
stopifnot(is.null(timer(st1,"watch")))

Rule Constructor for EIEvent Rule Objects

Description

The Rule funciton is the constructor for the Rule object. As Event objects are usually read from a
database or other input stream, the parseRule function is recreates an event from a JSON list.

Usage

Rule(context = "ALL", verb = "ALL", object = "ALL",
ruleType = c("Status", "Observable", "Context", "Trigger", "Reset"),
priority = 5, doc = "",
name = paste("When in", context, ",", verb, object, ruleType),
condition = list(), predicate = list(), app = "default")

parseRule(rec)
S4 method for signature 'Rule,list'
as.jlist(obj, ml, serialize = TRUE)

Arguments

context A character string describing the task, item or game level during which the event
occurred. This should be the name of an object of class Context and it could
reference a context set or the special keyword "ALL".

verb A character scalar identifying the action for which the rule is appropriate: could
be the special keyword "ALL".

object A character scalar identifying the direct object for which the rule is appropriate.
Could be the keyword "ALL".

ruleType A character identifier indicating which phase the rule should be run in. This
should be one of the values "State", "Observable", "Context", "Trigger",
or "Reset". See the ‘Rule Type’ section of Event for a description of the phases.

priority A numeric value indicating the order in which the rules should be run, lower
number running earlier in the sequence. It is recommended to use 5 for typical
values and smaller numbers for rules which must run earlier, and higher numbers
for rules which must run later.

doc A character vector describing the rule in human language.

84 Rule

name A character scalar giving an identifier fro the rule. Primarily used in error re-
porting, debugging and rule management.

condition A list in a special Conditions syntax. This tests the state of the current Status
and Event. If the test returns true, then the predicate is executed.

predicate A list in a special Predicates syntax. This describes the changes that are made
to the Status object (or other actions) that are taken when the rule is triggered.

app A character scalar providing a unique identifier for the application (game or
assessment). This defines the available vocabulary for verb and object, as well
as the set of applicable Rule objects.

rec A named list containing JSON data.

obj An object of class Event to be encoded.

ml A list of fields of obj. Usually, this is created by using attributes(obj).

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

Most of the details about the Rule object, and how it works is documented under Rule-class.

The function as.jlist converts the obj into a named list. It is usually called from the function
as.json.

The parseRule function is the inverse of as.jlist applied to an event object. It is designed to be
given as an argument to getOneRec and getManyRecs.

Soon to come. A loadRule function which will load in rules. These operate on JSON files, usually
part of a test suite.

Value

The functions Rule and parseRule return objects of class event. The function as.jlist produces
a named list suitable for passing to toJSON.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

Rule-class 85

See Also

The rule object is described in Rule and Conditions and Predicates each have detailed descriptions.
The functions testQuery and testQueryScript can be used to test that rule conditions function
properly. The functions testPredicate and testPredicateScript can be used to test that rule
conditions function properly. The functions testRule and testRuleScript can be used to test that
rule conditions and predicates function properly together. The class RuleTest stores a rule test.

buildMessage and as.json describe the JSON conversion system.

The functions getOneRec and getManyRecs use parseEvent to extract events from a database.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

r1 <- Rule(name="Coin Rule",
doc="Set the value of the badge to the coin the player earned.",
app="ecd://coe.fsu.edu/PPtest",
verb="satisfied", object="game level",
context="ALL",
ruleType="Observable", priority=5,
condition=list("event.data.badge"=c("silver","gold")),
predicate=list("!set"=c("state.observables.badge"=

"event.data.badge")))

r1a <- parseRule(ununboxer(as.jlist(r1,attributes(r1))))
all.equal(r1,r1a)

Rule-class Class "Rule"

Description

A Rule is a declarative predicate for processing events. It has two parts, a condition and a
predicate. If the current Status and Event statisfy the condition, then the Status is updated
according to the instructions in the Predicate.

Objects from the Class

Objects can be created by calls of the function Rule, or read from JSON using parseRule. Gener-
ally rules are stored in a RuleTable.

When the EIEngine gets a new Event, then the applicable rules from the appropriate rule table are
fetched. For each rule, if the condition is matched then the predicate is executed.

86 Rule-class

Slots

_id: Object of class "character" which provides the Mongo database ID of the rule. This gener-
ally should not be modified.

app: Object of class "character" giving the name of the application. This should match the
RuleTable the rule belongs to.

name: Object of class "character" giving a human readable identifier for the rule; used in error
reporting and rule management.

doc: Object of class "character" giving a human readable description of the intent of the rule.

context: Object of class "character" giving the character ID of of a Context or context group to
which the rule applies. The special value “ANY” can be used to indicate that the rule applies
to all contexts.

verb: Object of class "character" giving the value of the verb(Event) to which the rule applies.
The special value “ANY” is used to indicate that the rule applies to all verbs.

object: Object of class "character" giving the value of the object(Event) to which the rule
applies. The special value “ANY” is used to indicate that the rule applies to all verbs.

ruleType: Object of class "character" giving the type of the rule. See the ‘Rule Types’ section.

priority: Object of class "numeric" providing a partial ordering on the execution sequence of
rules. See ‘Rule Applicability and Sequencing’ section.

condition: Object of class "list" which provides a test for when the rule runs. This should be
expressed as a set of restrictions on the fields of the Status and Event classes. The syntax for
this field is described in the ‘Rule Condition’ section.

predicate: Object of class "list" which describes the action to be performed modifying the state
of the Status object if the condition is satisfied. The syntax for this field is described in the
‘Rule Condition’ section.

Rule Types

There are five types of rules, which are run in the following sequence:

1. “Status” Rules. These rules should have predicates which set flag variables and manipulate
timers. These rules are run first.

2. “Observable” Rules. These rules should have predicates that set observable values, they are
run immediately after the state rules.

3. “Context” Rules. These rules return a new value for the context field, if this needs to be
changed. These are run until either the set of context rules is exhausted or one of the rules
returns a value other than the current context.

4. “Trigger” Rules. These rules have a special predicate which sends a message to a process
listening to the EIP. These rules are given both the old and new context values as often they
will trigger when the context changes.

5. “Reset” Rules. These rules run only if the context changes. They are used to reset values of
various timers and flags that should be reset for the new context.

Note that the ruleType field should be one of the five keywords “Status”, “Observable”, “Context”,
“Trigger” or “Reset”.

Rule-class 87

The EIEngine runs these rules in sequence.

First the status rules are run followed by the observable rules. Although it is suggested that status
rules be used to change flags and timers and observable rules to change observables (see Status),
these rules are not strictly enforced. It is however, guarenteed that status rules will be run before
observable rules so that the status rule can be used to calculate intermediate variables which are
used in calculating the final observables.

After the observables have been updated, the context rules are run to find out if the context is
changed. The context rules are run until the value of context(Status) is not equal to the value of
oldContext(Status).

Next the trigger rules are run. These cause the EIEngine to send a P4Message to registered listeners.
The primary use is to inform the evidence accumulation engine that new observables are available.

Finally, if oldContext(Status) is not equal to context(Status), the reset rules are run to re-
set the values of timers and counters for the new context type. After this time, the value of
oldContext(Status) is set to context(Status) and the EIEngine is ready to process the next
event.

Rule Selection and Sequencing

The EIEngine applies the rules in five rounds according to the rule types. In each round, the
RuleTable is searched to find all applicable rules. A rule is applicable if all of the following
conditions are met:

1. The value of ruleType(Rule) matches the current round.

2. The value of verb(Rule) is equal to the value of verb(Event) or to the special value “ANY”.

3. The value of object(Rule) is equal to the value of object(Event) or to the special value
“ANY”.

4. The value of object(Rule) is equal to the value of context(Status), is equal to the name of
a group context to which context(Status) belongs (see applicableContexts), or is equal
to the special value “ANY”.

Any rule which satisfies these four conditions is consider applicable. The EIEngine checks the
condition of all applicable rules, and if the condition is true runs the predicate. The exception
is the context rule round, in which the rules are run until the first time the condition is satisfied (or
more precisely until the value of context(Status) changes).

Note that the sequence of rules within a round is arbitrary. In some cases, there will be order
dependencies among rules run during the same round. The priority field of the rules is used to
resolve potential conflicts of this sort. The EIEngine sorts the rules by priority before checking
them. Rules with lower priority are always run before rules with higher priority, but the sequence
of rules with the same priority is arbitrary.

Referencing fields of the Status and Event objects.

Both conditions and predicates need to reference fields in the Status and Event objects. This is
done using strings which use the dot notation (similar to javascript referencing in JSON documents)
to reference fields in the two objects. Thus, event.data.field references a field named “field” in
the details(Event). The following table gives useful dot notation references:

• state.context The current context that the state object is in.

88 Rule-class

• state.oldContext The the context of the state at the end of the previous event. In particular,
this can be compared to the context to check if the context has changed as a result of the event.

• state.observables.field The value of the observable named field.

• state.timers.field The the timer named field. Note that state.timers.field.time or .value
refers to the current elapsed time of the timer, and state.timers.field.run or .running is a
logical value which refers to whether or not the timer is running.

• state.flags.field The value of the observable named field.

• event.verb The verb associated with the current event.

• event.object The object associated with the current event.

• event.timestamp The time at which the event occurred.

• event.data.field The value of the extra data field named field.

In each of these cases, field refers to the name of a field in one of the collections in the Event or
Status object being processed. If the referenced field is a list, then the if the field reference is of
the form field.component then the named component of the list is referenced. If the list structure
itself contains lists as elements, then multiple ‘.’s can be used to reference the nested fields. In this
respect, the ‘.’ operator performs similarly to the S ‘$’ operator.

If the field references a character or numeric vector, then the ‘[]’ operator can be used to reference
elements of that vector. Thus status.flags.agents[3] references the third element of a vector
called ‘agents’ found in the flags collection of the status.

The functions getJS and setJS are used to access the fields, and the help for those functions
contains a number of examples.

Rule Conditions

The syntax for the condition part of the rule resembles the query lanugage used in the Mongo
database (MongoDB, 2018). There are two minor differences: first the syntax uses R lists and
vectors rather than JSON objects and second the ‘$’ operators are replaced with ‘?’ operators.

In general, each element of the list should have the form field=c(?op=arg). In this expression, field
references a field of either the Status or EIEngine (see sQuoteDot Notation section above), ?op is
one of the test operators below, and the argument arg is a litteral value (which could be a list) or a
character string in dot notation referencing a field of either the Status or Event. If ?op is omitted,
it is taken as equals if arg is a scalar and ?in if value is a vector. For more complex queries where
arg is a more complex expresison, the c() function is replaced with list().

See Conditions for a list of supported condition operators.

Rule Predicates

The syntax for the predicate of the rule resembles the database update operations used in the Mongo
database (MongoDB, 2018). There are two minor differences: first the syntax uses R lists and
vectors rather than JSON objects and second the ‘$’ operators are replaced with ‘!’ operators.

The general form of a predicate expression is !op=list(field=arg). Here !op is one of the oper-
ations described below, field is the name of a field in the Status object, and the argument arg is
either a literal value or a character scalar giving the name of a field of either the Status or Event
in dot notation.

See Predicates a list of supported operations and more information about predicate handling.

Rule-class 89

Rule Testing

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly.
The functions testPredicate and testPredicateScript can be used to test that rule conditions
function properly.
The functions testRule and testRuleScript can be used to test that rule conditions and predicates
function properly together.

Methods

as.jlist signature(obj = "Rule", ml = "list"): helper function for coverting the rule into a
JSON object, see as.json.

condition signature(x = "Rule"): Returns a list giving the conditions for the rule.
app signature(x = "Rule"): Returns a character scalar giving the ID of the application this rule

belongs to.
context signature(x = "Rule"): Returns a character scalar giving the ID of the context or context

group to which the rule is applicable.
object signature(x = "Rule"): Returns a character scalar giving the object to which the rule is

applicable.
predicate signature(x = "Rule"): Returns a list giving the predicate for the rule.
ruleType signature(x = "Rule"): Returns a character scalar giving the type of the rule.
predicate signature(x = "Rule"): Returns a number giving the priority for the rule; lower num-

bers are higher priority.
verb signature(x = "Rule"): Returns a character scalar giving the verb to which the rule is ap-

plicable.
show signature(object = "Rule"): Prints rule object.
toString signature(x = "Rule"): Produces <> representation of object.
all.equal.Rule (target, current, ..., checkTimestamp=FALSE, check_ids=TRUE): (S3 method)

Checks for equality.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.
Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.
Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.
MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

90 RuleTable-class

See Also

Conditions and Predicates each have detailed descriptions. The functions checkCondition and
executePredicate run the condition and predicate parts of the rule. The functions runRule and
runTRule run the indivual rules, and the functions runTriggerRules, runStatusRules, runObservableRules,
runResetRules, and runContextRules run sets of rules.

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly. The functions testPredicate and testPredicateScript can be used to test that predi-
cates function properly. The functions testRule and testRuleScript can be used to test that rule
conditions and predicates function properly together. The class RuleTest stores a rule test.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Methods for working with Rules: Rule, parseRule, ruleType, priority, condition, predicate,
verb, object, context, name, doc

Examples

showClass("Rule")

RuleTable-class Class "RuleTable"

Description

This is a containiner for a set of rules for an application.

Extends

All reference classes extend and inherit methods from "envRefClass".

This class extends by containment the MongoDB class where the actual rules are stored.

Tracing

The EIEngine uses the flog.logger system. In particular, setting the threshold for the “EIEvent”
logger, will change the amount of information sent to the log file.

In particular, DEBUG level logging will cause the findRules() method to tell how many rules were
returned, and the TRACE level will list them.

Fields

app: Object of class character providing applicaiton ID of the application.

dbname: Object of class character giving the name of the database used.

dburi: Object of class character giving the URI of the database used.

db: Object of class MongoDB giving the actual mongo collection. This should be accessed using the
ruledb() method to make sure that it has been properly updated.

stoponduplicate: Object of class logical. If true, an error will be signaled if a rule is added
with a duplicate name. If false, it will be quietly replaced.

RuleTable-class 91

Methods

updateRule(rule): This command will add or replace a rule in the database. If the rule has the
same name as an existing rule, the the behavior will depend on the value of stoponduplicate.
The that flag is FALSE, then the rule will be replaces, if true and error will be logged and the
rule not replaced. Note that if the rule has a database ID, and it does not match the ID of the
rule it is replacing, an error will be logged and the rule not replaced.

findRuleByName(name): This searchers for a rule by the name filed.

findRules(verb, object, context, phase): This is the key function that finds rules based on
Event and Status. This will return a (possibly empty) list of all matching rules.

skipDuplicate(newval): If called with no arguments, gives the rucrrent value of stoponduplicate.
If a logical value is given, then the value of the flag is set.

ruledb(): This returns the database collection If the database colleciton is currently null, it is
inialized. This method should be used rather than raw calls to the db field.

initialize(app, dbname, dburi, db, stoponduplicate, ...): This initialization method.

clearAll(): This removes all rules for this application from the database.

Note

A different set of rules is associated with each application ID.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

The Rule class object describes rules. The function loadRulesFromList and testAndLoad can be
used to load rules into the rule table.

The primary classes in the EIEvent system are: EIEngine, Context, Status, Event, Rule.

The EIEngine class is a container for the following classes: UserRecordSet, RuleTable, ContextSet,
TestSet and ListenerSet,

flog.logger

Examples

showClass("RuleTable")

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

92 RuleTest

RuleTest Constructor for EITest or Rule Test.

Description

These are the constructors for the EITest and RuleTest objects. As test objects are usually read
from a database or other input stream, the parseEITest and parseRuleTest functions recreate test
objects from a JSON list and as.jlist encodes them into a list to be saved as JSON.

Usage

EITest(name, doc = "", app = "default", initial, event, final)
RuleTest(name = paste("Test of Rule", rule), doc = "",

app = "default", initial, event, rule, queryResult, final)
parseEITest(rec)
parseRuleTest(rec)
S4 method for signature 'EITest,list'
as.jlist(obj, ml, serialize = TRUE)
S4 method for signature 'RuleTest,list'
as.jlist(obj, ml, serialize = TRUE)

Arguments

name A character string identifying the test. Used in Logging.
doc A character string providing a description of the test.
app A character string identifying the application.
initial A Status object giving the initial state of the system.
event A Event object giving the triggering event.
rule A Rule object giving rule being tested.
queryResult A logical value indicating whether or not the Conditions of the rule are satis-

fied; that is, whether or not the Predicates of the rule should be run.
final A Status object giving the final state of the system.
rec A named list containing JSON data.
obj An object of class RuleTest to be encoded.
ml A list of fields of obj. Usually, this is created by using attributes(obj).
serialize A logical flag. If true, serializeJSON is used to protect the data field (and

other objects which might contain complex R code).

Details

Most of the details about the EITest and RuleTest objects is documented under the class page.

The function as.jlist converts the obj into a named list. It is usually called from the function
as.json.

The parseEITest function is the inverse of as.jlist applied to an EITest object, and parseRuleTest
is for a RuleTest object. They are designed to be given as an argument to getOneRec and getManyRecs.

RuleTest 93

Value

The functions EITest and parseEITest return objects of class EITest. The functions RuleTest
and parseRuleTest return objects of class RuleTest. The function as.jlist produces a named
list suitable for passing to toJSON.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the context system: https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

EITest describes the EITest object. RuleTest describes the RuleTest object.

The functions testQuery, testPredicate, and testRule are used to actually execute the tests.

buildMessage and as.json describe the JSON conversion system.

The functions getOneRec and getManyRecs use parseStatus to extract events from a database.

Examples

etest <- EITest(
name="My First test",
doc="Demonstrate EI Test mechanism.",
initial = Status("Fred","test",timestamp=as.POSIXct("2018-12-21 00:01:01")),
event= Event("Fred","test","rule",details=list(trophy="gold"),

timestamp=as.POSIXct("2018-12-21 00:01:01")),
final = Status("Fred","test",

observables=list("trophy"="gold"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

)

el <- as.jlist(etest,attributes(etest))
etesta <- parseEITest(el)
stopifnot(all.equal(etest,etesta))

test <- RuleTest(
name="Simple test",
doc="Demonstrate test mechanism.",
initial = Status("Fred","test",timestamp=as.POSIXct("2018-12-21 00:01:01")),
event= Event("Fred","test","rule",details=list(trophy="gold"),

timestamp=as.POSIXct("2018-12-21 00:01:01")),
rule=Rule(condition=list("event.data.trophy"="gold"),

predicate=list("!set"=c("state.observables.trophy"="event.data.trophy")),
ruleType="Observable"),

queryResult=TRUE,
final = Status("Fred","test",

observables=list("trophy"="gold"),

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

94 RuleTest

timestamp=as.POSIXct("2018-12-21 00:01:01")),
)

tl <- as.jlist(test,attributes(test))
testa <- parseRuleTest(tl)
stopifnot(all.equal(test,testa))

test1 <- RuleTest(
name="Simple test",
doc="Demonstrate test mechanism.",
initial = Status("Fred","test",timestamp=as.POSIXct("2018-12-21 00:01:01")),
event= Event("Fred","test","rule",details=list(trophy="silver"),

timestamp=as.POSIXct("2018-12-21 00:01:01")),
rule=Rule(condition=list("event.data.trophy"="gold"),

predicate=list("!set"=c("state.observables.trophy"="event.data.trophy")),
ruleType="Observable"),

queryResult=TRUE,
final = Status("Fred","test",

observables=list("trophy"="silver"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

)

test1a <- parseRuleTest(as.jlist(test1,attributes(test1)))
stopifnot(all.equal(test1,test1a))

testr <- RuleTest(
name="Simple set",
doc="Demonstrate predicate test mechanism.",
initial = Status("Fred","test",
timestamp=as.POSIXct("2018-12-21 00:01:01")),

event= Event("Fred","test","rule",details=list(agent="ramp"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

rule=Rule(predicate=list("!set"=c("state.observables.rampused"=TRUE)),
ruleType="Observable"),

queryResult=TRUE,
final=Status("Fred","test",observables=list("rampused"=TRUE),

timestamp=as.POSIXct("2018-12-21 00:01:01")))

testra <- parseRuleTest(as.jlist(testr,attributes(testr)))
stopifnot(all.equal(testr,testra))

testt <- RuleTest(
name="Simple message",
doc="Demonstrate trigger test mechanism.",
initial = Status("Fred","test",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
observables=list(badge="silver")),

event= Event("Fred","level","finished",details=list(badge="silver"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

rule=Rule(predicate=list("!send"=list()),
ruleType="Trigger"),

RuleTest-class 95

queryResult=TRUE,
final=P4Message(uid="Fred",mess="Observables Available",

details=list(badge="silver"),context="test",sender="EIEvent",
timestamp=as.POSIXct("2018-12-21 00:01:01")))

testtl <- as.jlist(testt,attributes(testt))
testta <- parseRuleTest(testtl)
stopifnot(all.equal(testt,testta))

RuleTest-class Class "RuleTest"

Description

A rule along with a test case for verifying the rule. This is a special case of the more general EITest.

Objects from the Class

A rule test object consists of a Rule object, plus a test case for the rule. The test case has an initial
Status, a triggering Event, and an expected result Status. In the case of testing trigger rules, the
result could be a P4Message or list of messages. It also has a logical queryResult field which
describes whether or not the rule’s Conditions is satisfied in the test case.

Objects can be created by calls of the form RuleTest(...), or from JSON through parseRuleTest.

Slots

_id: Object of class "character", the internal mongo identifier.

app: Object of class "character", the unique identifier for the application to which this belongs.

name: Object of class "character", a human readable name for the test, used in reporting.

doc: Object of class "character", a documentation string describing the test.

initial: Object of class Status which describes the initial state of the system before the test.

event: Object of class Event which describes the incoming event to which the rule is reacting.

rule: Object of class Rule, the rule being tested.

queryResult: Object of class "logical" which specifies whether or not the rule Conditions are
met.

final: Object of class Status which describes the expected final state of the system after applying
the rule, or an object of class P4Message describing the generated message.

Extends

Class "EITest", directly. This difference is two extra slots: One for

96 ruleType

Methods

as.jlist signature(obj = "RuleTest", ml = "list"): helper function for converting the test into
a JSON object, see as.json.

queryResult signature(x = "RuleTest"): Returns the expected value of the Conditions part of
the rule.

rule signature(x = "RuleTest"): Returns the rule being tested.

toString signature(x = "RuleTest"): Returns a string describing the rule.

Author(s)

Russell G. Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

The functions testQuery, testPredicate, and testRule are used to actually execute the tests.

The functions RuleTest and parseRuleTest are used to construct the rule.

The functions name, doc, initial, event, rule, queryResult, and final access the components
of the test.

The TestSet maintains a collection of tests for a particular application.

Examples

showClass("RuleTest")

ruleType Accessors for Rule objects.

Description

The functions described here access the corresponding fields of an Rule object.

Usage

ruleType(x)
S4 method for signature 'Rule'
ruleType(x)
priority(x)
S4 method for signature 'Rule'
priority(x)
condition(x)

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

ruleType 97

S4 method for signature 'Rule'
condition(x)
predicate(x)
S4 method for signature 'Rule'
predicate(x)

Arguments

x An object of class Rule to be accessed.

Value

The function ruleType returns a string which should be one of "Status", "Observable", "Context",
"Trigger", or "Reset".

The function priority returns a numeric value with lower values indicating higher priority.

The functions condition and predicate return a list which represents either the Conditions or
Predicates of the rule.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

The Rule object has documentation about the type and priority system and Conditions and Predi-
cates each have detailed descriptions of the condition and predicate arguments.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Other methods for working with Rules: Rule, parseRule, verb, object, context, name, doc

Examples

r1 <- Rule(name="Coin Rule",
doc="Set the value of the badge to the coin the player earned.",
app="ecd://coe.fsu.edu/PPtest",
verb="satisfied", object="game level",

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

98 runRule

context="ALL",
ruleType="Observable", priority=5,
condition=list("event.data.badge"=c("silver","gold")),
predicate=list("!set"=c("state.observables.badge"=

"event.data.badge")))

stopifnot(ruleType(r1)=="Observable", priority(r1)==5,
all.equal(condition(r1),list("event.data.badge"=c("silver","gold"))),
all.equal(predicate(r1),list("!set"=c("state.observables.badge"=

"event.data.badge"))))

runRule Runs a specific rule in a particular application.

Description

The function runRule runs a Rule against a particular Status (state) and Event. The function
runTRule is a special version for trigger rules that sends the generated message, if any, to the
listeners.

Usage

runRule(state, event, rule, phase)
runTRule(state, event, rule, listeners)

Arguments

state An object of class Status which describes the current state for the person.

event An object of class Event which describes the current event being processed.

rule An object of class Rule which is the rule to be executed.

phase An object of type character giving the phase being executed, used mainly for
logging and error reporting.

listeners An object of class Listener (often a ListenerSet which will receive the mes-
sages from the trigger rules.

Details

The function runRule() runs the rule logic. For more about rule logic, see Rule.

The function first runs checkCondition to check if the rule is statisfied or not. If the condition is
satisfied, then the predicate of the rule will be run using executePredicate. The resulting state
object is returned.

The function runTRule() is similar, but meant specifically for trigger rules. Instead of executePredicate,
the function buildMessages is used to build a list of messages. These are then sent to the listenerSet
argument using its notifyListeners method.

runRule 99

The rules are executed under withFlogging protection. This means that if an error is encountered,
the error message is logged (along with debugging information depending on the current logging
threshold). In this case, and object of class try-error is returned instead of the normal error return.

Value

The function runRule returns the modified Status object. The function runTRule returns a list of
P4Message objects. In either case, if an error occurs, then an object of class try-error is returned
instead of the normal value.

Note

This function uses the flog.logger mechanism. The following information is reported at various
thresholds:

TRACE The results of checkCondition are reported.

DEBUG When an error occurs information about the state, event and rule where the error occurred
as well a stack trace are logged.

INFO and above If an error occurs the error is logged along with context information.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

Conditions and Predicates each have detailed descriptions. The functions checkCondition and
executePredicate run the condition and predicate parts of the rule. The functions runRule and
runTRule run the indivual rules, and the functions runTriggerRules, runStatusRules, runObservableRules,
runResetRules, and runContextRules run sets of rules.

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly. The functions testPredicate and testPredicateScript can be used to test that predi-
cates function properly. The functions testRule and testRuleScript can be used to test that rule
conditions and predicates function properly together. The class RuleTest stores a rule test.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

runRule

st0 <- Status(uid="Test0",context="Stairs",
timestamp=as.POSIXct("2018-09-25 12:12:28 EDT"),
observables=list(agentsUsed=list(),

lastAgent=NA))

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

100 runRule

evnt1 <- Event(uid="Test0",
verb="identified",object="game object",
context="Stairs",
timestamp=as.POSIXct("2018-09-25 12:12:29 EDT"),
details= list("gemeObjectType"="Lever"))

st1exp <- Status(uid="Test0",context="Stairs",
timestamp=as.POSIXct("2018-09-25 12:12:28 EDT"),
observables=list(agentsUsed=list("Lever"),

lastAgent="Lever"))
r2o <- Rule(name="Update agent used.",

doc="Adds the agent to the agent list, and sets the last agent.",
context="Sketching", verb="identified",
object="game object", ruleType="Observable",
condition=list(event.data.gemeObjectType=c("Ramp", "Lever",
"Springboard", "Pendulum")),
predicate=list("!set"=list("state.observables.lastAgent"=

"event.data.gemeObjectType"),
"!push"=list("state.observables.agentsUsed"=

"event.data.gemeObjectType")))

st1act <- runRule(st0,evnt1,r2o,"Observable")
stopifnot(all.equal(st1exp,st1act))

runTRule
st2 <- Status(uid="Test0",context="Stairs",

timestamp=as.POSIXct("2018-09-25 12:13:30 EDT"),
observables=list(agentsUsed=list("Lever"),

lastAgent="Lever",
badge="silver"))

evnt2 <- Event(uid="Test0",
verb="satisfied",object="game level",
context="Stairs",
timestamp=as.POSIXct("2018-09-25 12:13:30 EDT"),
details= list("badge"="silver"))

r4t <- Rule(name="Satisfied Trigger",
doc="When the level is satisifed, send the observables.",
context="ALL", verb="satisfied",
object="game level", ruleType="Trigger",
condition=list(),
predicate=list("!send"=list(mess="Observables Available",

context="state.oldContext",
data=list())))

mess1 <- buildMessages(predicate(r4t),st2,evnt2)[[1]]

cl <- new("CaptureListener")

runTRule(st2,evnt2,r4t,cl)
mess1a <- cl$lastMessage()
stopifnot(all.equal(mess1a,mess1,check_ids=FALSE))

runStatusRules 101

runStatusRules Runs all of the appropriate rules of the given type.

Description

Given a player Status (state) and an Event, this function runs all of the rules of the appropriate
type and in order of the priority.

Usage

runStatusRules(eng, state, event, rules)
runObservableRules(eng, state, event, rules)
runContextRules(eng, state, event, rules)
runTriggerRules(eng, state, event, rules)
runResetRules(eng, state, event, rules)

Arguments

eng An object of class EIEngine which is responsible for maintaining the rule base
and running the rules.

state An object of class Status which gives the state of the system before the rules
are run.

event An object of class Event which provides details of the event being processed.

rules An list of objects of class Rule sorted in priority. The rules of the appropriate
type will be selected from this list.

Details

The functions are run by handleEvent in the following five phases:

1. runStatusRules runs (calls runRule on) the status Rule objects. These update the internal
status (flags and timers) of the state. The modified state is returned from these rules.

2. runObservableRules runs the observable Rule objects. These update the external status
(observables) of the state. The modified state is returned from these rules.

3. runContextRules runs the context Rule objects. These update the context field of the state.
These are run until the context changes (is no longer equal to oldContext) or all of the rules
have been processed with no change in context. The modified state is returned from these
rules.

4. runTriggerRules runs (calls runTRule on) the trigger Rule objects. Trigger rules do not
modify the state, but rather if they are satisfied sends a message to the listeners(eng).

5. runResetRules runs (calls runRule on) the reset Rule objects, but only when the context has
changed (is different from oldContext). It resets counters, timers and flags. Note that the
logic about whether the state has changed is in handleEvent not this function.

102 runStatusRules

The rules are loaded from the database using the findRules method of the EIEngine (which in
turn calls the findRules method of the RuleTable it contains). The rule matches the current phase
if the following conditions hold:

• The app field of the rule matches that of the engine (and the state and event).
• The verb and object of the rule either match those of the event, or have the special value

“ALL”.
• The context of the rule either matches the context of the state, or is a context group that

contains the context of the state (see applicableContexts) or is the special value “ALL”.
• The ruleType of the rule matches the current phase.

All rules matching these conditions are returned and sorted by the rule’s priority. Ties are handled
arbitrarily. The rules are then run (using runRule) in the returned order. If an error occurs in running
any of the rules, then further processing will stop and an object of class try-error will be returned.

Two exceptions: First, the context rules are only run until the context changes. As soon as the
context changes, the function runContextRules exits and returns the modified state. Second, the
function runTriggerRules uses runTRule instead of runRule. Instead of modifiying the state, it
sends messages to the engine’s listeners.

Rules are processed in the withFlogging environment, so depending on the current threshold,
various information will be provides about which rules are run. Also, if an error occurs, all of the
functions will return an object of class try-error instead of their normal return value. This can be
used to suspend processing.

Value

If processing was successful the possibly modified state (an object of class Status will be re-
turned.

If processing was unsuccessful, then an object of class try-error will be returned.

Note

The signature of this function has changed for reasons of efficiency. In previous versions, each
function did a very simlilar database check. In practice, a lot of time was spent checking the
database to find that there were no applicable rules. Now, the function processEvent finds the
applicable rules, and the functions merely select the ones that match the status. If no rules are
available, a considerable amount of time is saved.

This function uses the flog.logger mechanism. The following information is reported at various
thresholds:

TRACE • The results of checkCondition are reported.
• The specific rules found from each query are reported.
• A message is logged as each rule is run.

DEBUG • When an error occurs information about the state, event and rule where the error
occurred as well a stack trace are logged.

• Rule searches are logged and the number of rules reported.
• A message is logged when each phase starts.
• A message is logged when the context changes.

INFO and above If an error occurs the error is logged along with context information.

runStatusRules 103

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

Conditions and Predicates each have detailed descriptions. The functions checkCondition and
executePredicate run the condition and predicate parts of the rule. The functions runRule and
runTRule run the indivual rules, and the functions runTriggerRules, runStatusRules, runObservableRules,
runResetRules, and runContextRules run sets of rules.

The functions testQuery and testQueryScript can be used to test that rule conditions function
properly. The functions testPredicate and testPredicateScript can be used to test that predi-
cates function properly. The functions testRule and testRuleScript can be used to test that rule
conditions and predicates function properly together. The class RuleTest stores a rule test.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

Not run:
processEvent <- function (eng,state,event) {

flog.debug("") #Blank line for visibility.
flog.info("New Event for

verb(event),object(event),
toString(timestamp(event)))

rules <- eng$findRules(verb(event),object(event),context(state))
if (length(rules)==0L) {

flog.info("No rules for event, skipping.")
return (NULL)

}
out <- runStatusRules(eng,state,event)
if (is(out,'try-error')) return (out)
else state <- out
out <- runObservableRules(eng,state,event)
if (is(out,'try-error')) return (out)
else state <- out
out <- runContextRules(eng,state,event)
if (is(out,'try-error')) return (out)

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

104 runTest

else state <- out
runTriggerRules(eng,state,event)
if (oldContext(state) != context(state)) {

out <- runResetRules(eng,state,event)
if (is(out,'try-error')) return (out)
else state <- out
state@oldContext <- context(state)

}
state@timestamp <- timestamp(event)
state

}

End(Not run)

runTest Runs a test case with a given set of rules

Description

This function runs a test case in the context of a particular application. In particular, it checks to
make sure that the rules are behaving as expected.

Usage

runTest(eng, test)

Arguments

eng An object of class EIEngine which provides the testing environment.

test An object of class EITest which describes the test.

Details

An EITest object contains an initial Status, an Event and a result field which could either be a
final Status or a P4Message that could be sent by a trigger rule. The function runTest processes
this event with the given initial status and checks the actual result agains the expected result.

Value

The function returns TRUE if the event was handled without error and the result matched the expected
value, FALSE if the event was handled without error, but the result did not match, and NA if handling
the event (or comparing the result to the expected result) produced an error.

Note that errors are logged using withFlogging which will provide details about errors.

Note

This function is pretty much untested. This is a planned expansion.

setJS 105

Author(s)

Russell Almond

See Also

See testRule for the testing functions that are currently implemented.

See EITest for the test class.

Examples

The function is currently defined as
function (eng, test)
{

cl <- new("CaptureListener")
eng$ListenerSet$addListener(name(test), cl)
flog.info("Running Test %s", name(test))
flog.debug("Details:", doc(test), capture = TRUE)
result <- NA
withFlogging({

actual <- eng$testRules(initial(test), event(test))
if (is(final(test), "P4Message")) {

actual <- cl$lastMessage()
}
else if (is(final(test), "list")) {

actual <- cl@messages
}
result <- all.equal(final(test), actual)
if (!isTRUE(result)) {

flog.info("Test %s failed.", name(test))
flog.info("Details:", result, capture = TRUE)
flog.debug("Actual Status/Message:", actual, capture = TRUE)
result <- FALSE

}
}, context = paste("Running Test", name(test)), test = test)
eng$ListenerSet$removeListener(name(test))
result

}

setJS Sets a field in a status object in Javascript notation.

Description

Fields of a Status can be accessed using JavaScript notation, e.g., state.flags.field, state.observables.field,or
state.timers.name. The function getJS set the current value of the referenced field from the state
object.

106 setJS

Usage

setJS(field, state, now, value)
setJSfield(target, fieldlist, value)

Arguments

field A character scalar describing the field to be referenced (see details).

state An object of type Status giving the current status of the user in the system; this
argument will be modified.

now An object of class POSIXt which gives the time ofthe event. Used when setting
timers.

value The new value to be assigned to the field.

target A collection object to be accessed. The object implmenting state.flags,
state.observables or one of sub-components.

fieldlist The successive field names as a vector of characters (split at the ‘.’ and excluding
the initial state.flags, state.observables or event.details.

Details

The Predicates of Rule objects update parts of the current state. As these rules are typically
written in JSON, it is natural to reference the parts of the Status objects using javascript notation.
Javascript, like R, is a weakly typed language, and so javascript objects are similar to R lists: a
named collection of values. A period, ‘.’, is used to separate the object from the field name, similar
to the way a ‘$’ is used to separate the field name from the object reference when working with R
lists. If the object in a certain field is itself an object, a succession of dots. Thus a typical reference
looks like: object.field.subfield and so forth as needed.

In EIEvent rules, only the state, the current Status, can be modified. Therefore, in the predicate
all dot notation field references start with state (field references starting with event can be used
in the value). Furthermore, Status objects have only a certain number of settable fields so only
those fields can be referenced.

The state object has two fields which are collections of arbitrary object: state.flags and state.observables.
(The state also contains a collection of timer objects, state.timers, which has special rules de-
scribed below.) Each of these is a named collection (list in R), and components can be refenced
by name. The expressions “state.flags.name”, and “state.observables.name” reference an
object named name in the flags or observables field of the state respectively. Note that the available
components of these lists fields will depend on the context of the simulation and the verb and object
of the event.

The fields state.flags and state.observables could also be multipart objects (i.e., R lists).
Additional dots can be used to reference the subcomponents. Thus “state.flags.position.x”
references the x-coordinate of the position object in the flag field. These dots can be nested to an
aribrary depth.

The fields of state.flags. and state.observables. can also contain unnamed vectors (either
character, numeric, or list). In this case square brackets can be used to index the elements by
position. Indexes start at 1, as in R. For example, “state.flags.agentList[3]” references the
third value in the agentList flag of the status. Currently only numeric indexes are allowed, variable
references are not, nor can sublists be selected.

setJS 107

Note that the fields allowed to be set are a subset of the fields in which can be accessed (see setJS
for a complete list). In particular, only fields of the state object can be set, while fields of the
event object can also be referenced. Also, certain fields of the state object are read only.

The function setJSfield is an internal function which is used to set the components, it is called
recursively to modify fields which are themselves lists or vectors.

Value

The setJS function always returns the modified state object. The setJSfield function returns the
modified colleciton object, or if the fieldlist is empty, the new value.

Fields of the Status object.

The following fields of the Status object can be set:

• state.context The current context that the state object is in.

• state.observables.field The value of the observable named field.

• state.timers.field The the timer named field. Note that state.timers.field.time or .value
refers to the current elapsed time of the timer, and state.timers.field.run or .running is a
logical value which refers to whether or not the timer is running.

• state.flags.field The value of the observable named field.

The other fields listed in getJS can be accessed but not set.

Timers

The state.timers field holds a named list of objects of class Timer. These behave as if they have
two settable subfields: running (or run) and time (or value).

The running (or run) virtual field is a logical field: TRUE indicates running and FALSE indicates
paused. Setting the value of the field will cause the timer to resume (start) or pause depending on
the value.

The time (or value) field gives the elapsed time of the timer. Setting the field to zero will reset the
timer to zero, setting it to another value will adjust the time.

Note

It is clear that some kind of indirect reference (i.e., using variables, either integer or character, inside
of the square brackects) is needed. This may be implemented in a future version.

Author(s)

Russell Almond

108 setJS

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

The functions getJS for accessing fields and removeJS for removing fields (only allowed with state
objects). This function is called from executePredicate.

The help files Conditions and Predicates each have detailed descriptions of rule syntax.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, Rule.

Examples

st <- Status("Phred","Level 0",timerNames="watch",
flags=list("list"=list("one"=1,"two"="too"),"vector"=(1:3)*10,

"char"="hello"),
observables=list("list"=list("one"="one","two"=2),"vector"=(1:3),

"char"="bar"),
timestamp=as.POSIXct("2018-12-21 00:01"))

ev <- Event("Phred","test","message",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list("list"=list("one"=1,"two"=1:2),"vector"=(1:3)))

ts <-timestamp(ev)

st <- setJS("state.context",st,ts,"Level 1")
stopifnot(getJS("state.context",st,ev)=="Level 1",

getJS("state.oldContext",st,ev)=="Level 0")

st <- setJS("state.observables.numeric",st,ts,12.5)
stopifnot(getJS("state.observables.numeric",st,ev)==12.5)

st <- setJS("state.observables.char",st,ts,"foo")
stopifnot(getJS("state.observables.char",st,ev)=="foo")

st <- setJS("state.observables.list.one",st,ts,"a")
stopifnot(

all.equal(getJS("state.observables.list",st,ev),list("one"="a","two"=2)),
getJS("state.observables.list.one",st,ev)=="a")

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

setTimer 109

st <- setJS("state.observables.vector",st,ts,(1:3)*100)
st <- setJS("state.observables.vector[2]",st,ts,20)
stopifnot(

getJS("state.observables.vector[2]",st,ev)==20,
all.equal(getJS("state.observables.vector",st,ev),c(100,20,300)))

st <-setJS("state.flags.list.two",st,ts,"two")
stopifnot(all.equal(getJS("state.flags.list",st,ev),list("one"=1,"two"="two")))

st <-setJS("state.flags.vector[3]",st,ts,3)
stopifnot(

getJS("state.flags.vector[3]",st,ev)==3,
all.equal(getJS("state.flags.vector",st,ev),c(10,20,3)))

st <- setJS("state.flags.logical",st,ts,TRUE)
stopifnot(getJS("state.flags.logical",st,ev)==TRUE)

st <- setJS("state.flags.char",st,ts,"foobar")
stopifnot(getJS("state.flags.char",st,ev)=="foobar")

setTimer Manipulates a Timer inside of a Status

Description

A Status object contains a named collection of Timer objects. These functions access the timer
object. Note that because the timer is not an actual clock, but rather calculates the time difference
between events, most of the functions must be passed the “current” time, which is usually the
timestamp of the Event object being processed.

Usage

setTimer(x, timerID, time, running, now)
S4 method for signature 'Status,character'
setTimer(x, timerID, time, running, now)
timer(x, name)
timer(x, name) <- value
timerTime(x, name, now)
S4 method for signature 'Status,character'
timerTime(x, name, now)
timerTime(x, name, now) <- value
S4 replacement method for signature 'Status,character'
timerTime(x, name, now) <- value
S4 method for signature 'Status,character'
timerRunning(x, name, now)
timerRunning(x, name, now) <- value

110 setTimer

S4 replacement method for signature 'Status,character'
timerRunning(x, name, now) <- value

Arguments

x An object of class Status whose timers are to be accessed. (These are generic
functions, so methods for classes other than Status could be written.)

timerID A character string of the form state.timers.name. The name operates like the
name argument.

name A character scalar giving the name of the timer to be accessed.

time The new elapsed time of the timer. This should be an object of class difftime.

running A logical flag indicating whether or not the timer should be running.

now The current time, usually from the timestamp of the Event object being pro-
cessed.

value The replacement value. For timerTime<- this should be an object of class
difftime. For timerRunning<- this should be a logical value. For timer<-
this should be an object of class Timer.

Details

The Status objects contain a named list of Timer objects. Each timer contains two conceptual
fields: running which indicates whether or not the timer is running and time which indicates
the current elapsed time. (Note that these are actually implemented using differences between
timestamps, which is why most of the functions need to pass the current time in the now argument.
See start for details.

The timer and timer<- functions access the Timer object directly.

The timerRunning and timerRunning<- functions access the conceptual running field of the
timer. In particular, the setter method starts or pauses the timer.

The timerTime and timerTime<- functions access the conceptual time field of the timer. In par-
ticular, they call timerTime or timerTime on the timer.

The function setTimer is an omnibus modifier, meant to be called from setJS. Instead of the
timer name, it uses the fully qualified dot notation: state.timers.name. If no timer for the given
name exists, it creates one; otherwise, it uses the existing timer. It then calls timerTime<- and
timerRunning<- with the given value.

The functions getJS and setJS call these functions if the referenced field is of the form state.timers.name.
Note that the setJS function gets the current time from the event object, so it does not need to be
specified in this form.

Value

The function timer returns an object of class Timer.

The function timerRunning returns a logical value indicating whether or not the timer is currently
running.

The function timerTime returns the elapsed time in difftime format.

setTimer 111

The function setTimer and the other setter methods return the Status object which is the first
argument.

Note

Internally, the timers are implemented as a start time and an elapsed time (see start). Elapsed
times are calculated by differencing two time stamps. Therefore, it is usually necessary to pass
along the “current” time with these functions, usually from the timestamp of the Event object.

Author(s)

Russell Almond

See Also

The Timer class describes timers, and the Status class contains a collection of timers.

Methods for manipulating timer directly include start, resume, pause, isRunning, timeSoFar
and reset.

The functions setJS, getJS and removeJS have details about how to manipulate timers using rules.

Examples

st <- Status("Phred","Level 0",timerNames="watch",
timestamp=as.POSIXct("2018-12-21 00:00:01"))

context(st) <- "Level 1"

stopifnot(timer(st,"watch")@name=="watch")

timer(st,"stopwatch") <- Timer("stopwatch")
stopifnot(timer(st,"stopwatch")@name=="stopwatch")

timerRunning(st,"stopwatch",as.POSIXct("2018-12-21 00:00:01")) <- TRUE
stopifnot(!timerRunning(st,"watch",as.POSIXct("2018-12-21 00:00:02")),

timerRunning(st,"stopwatch",as.POSIXct("2018-12-21 00:00:02")))

timerRunning(st,"stopwatch",as.POSIXct("2018-12-21 00:01:01")) <- FALSE
stopifnot(!timerRunning(st,"stopwatch",as.POSIXct("2018-12-21 00:01:02")),

timerTime(st,"stopwatch",as.POSIXct("2018-12-21 00:01:02"))==
as.difftime(1,units="mins"))

timerRunning(st,"stopwatch",as.POSIXct("2018-12-21 00:03:01")) <- TRUE
stopifnot(timerTime(st,"watch",as.POSIXct("2018-12-21 00:03:02"))==

as.difftime(0,units="secs"),
timerTime(st,"stopwatch",as.POSIXct("2018-12-21 00:03:02"))==
as.difftime(61,units="secs"))

timerTime(st,"watch",as.POSIXct("2018-12-21 00:05:00")) <-
as.difftime(5,units="mins")

timerTime(st,"stopwatch",as.POSIXct("2018-12-21 00:05:00")) <-
as.difftime(5,units="mins")

112 start

stopifnot(timerTime(st,"watch",as.POSIXct("2018-12-21 00:05:02"))==
as.difftime(300,units="secs"),
timerTime(st,"stopwatch",as.POSIXct("2018-12-21 00:05:02"))==
as.difftime(302,units="secs"))

st <- setTimer(st,"state.timers.stopwatch",as.difftime(0,units="secs"),FALSE,
as.POSIXct("2018-12-21 00:10:00"))

st <- setTimer(st,"state.timers.runwatch",as.difftime(50,units="secs"),TRUE,
as.POSIXct("2018-12-21 00:10:00"))

stopifnot(!timerRunning(st,"stopwatch",as.POSIXct("2018-12-21 00:10:02")),
timerRunning(st,"runwatch",as.POSIXct("2018-12-21 00:10:02")),
timerTime(st,"stopwatch",as.POSIXct("2018-12-21 00:10:02"))==
as.difftime(0,units="secs"),
timerTime(st,"runwatch",as.POSIXct("2018-12-21 00:10:02"))==
as.difftime(52,units="secs"))

start Functions for manipulating timer objects.

Description

A Timer object keeps track of the elapsed time between events. These functions update the state of
the timer. Note that because Timers don’t operate in real time, most of these functions need to be
passed the “current” time, which is the timestamp of the Event which is being processed.

Usage

start(timer, time, runningCheck = TRUE)
S4 method for signature 'Timer,POSIXt'
start(timer, time, runningCheck = TRUE)
pause(timer, time, runningCheck = TRUE)
S4 method for signature 'Timer,POSIXt'
pause(timer, time, runningCheck = TRUE)
resume(timer, time)
S4 method for signature 'Timer,POSIXt'
resume(timer, time)
isRunning(timer)
S4 method for signature 'Timer'
isRunning(timer)
timeSoFar(timer, time)
S4 method for signature 'Timer,POSIXt'
timeSoFar(timer, time)
S4 replacement method for signature 'Timer,POSIXt'
timeSoFar(timer, time) <- value
totalTime(timer)
S4 method for signature 'Timer'

start 113

totalTime(timer)
reset(timer)
S4 method for signature 'Timer'
reset(timer)

Arguments

timer An object of class Timer.

time Either an object of class POSIXt or a an object that can be coerced into class
POSIXt. Note that strings need to be in ISO 8601 format (or manually converted
using strptime.) This is usually the timestamp value of the Event being pro-
cessed.

runningCheck A logical value. If TRUE start, pause and resume will signal an error if the
timer is currently in an unexpected state.

value A time interval in difftime format which is to be the new elapsed time.

Details

These functions allow the Timer object to behave like a stopwatch, event though it is implemented
with a collection of timestamps. Because it doesn’t really run a clock, but instead takes the different
between the timestamps of the starting and finishing event, most of the function here need to pass
the “current” time, which is defined as the timestamp of the Event object being processed.

The following functions are supported:

start Sets the timer running. If runningCheck is true, it signals an error if the timer is already
running. Does not change the elapsed time.

pause Pauses the timer. If runningCheck is true, it signals an error if the timer is not currently
running.

resume Identical to start with runningCheck=TRUE.

timeSoFar Returns the elapsed time on the timer. (Similar to the lap time on a stopwatch.)

timeSoFar<- Sets the elapsed time to a new value. If the timer is running, adjusts the start time to
the current time argument.

isRunning Returns the state of the timer as a logical value (TRUE for running).

reset Stops the timer and sets the elapsed time to zero.

totalTime Returns the total time up until the last pause; if the timer is running, the time since
startTime is ignored.

Value

The isRunning function returns a logical value giving the state of the timer.

The timeSoFar and totalTime functions returns an object of type difftime giving the current
elapsed time.

The other functions return the modified timer object.

114 start

Note

Internally, Timer objects maintain their state using two fields: startTime and totalTime. When
the timer is started (resumed), the startTime is set to the current time, and it is set to NA when it
is paused. The running status can be determined by checking whether or not the startTime is NA.
When the timer is paused, the difference between the current time and the startTime is added to
the totalTime. So the elapsed time is the totalTime plus the difference between the current time
(the argument) and the startTime.

Here are the acutal implementation of the manipulation functions:

start Sets the startTime to the time. Does not change totalTime.

pause Adds the difference between time and startTime to totalTime; sets startTime to NA.

resume Identical to start with runningCheck=TRUE.

timeSoFar If running, returns totalTime + time - startTime. If paused, returns totalTime.

timeSoFar<- Sets totalTime to value. If the timer is running sets startTime <- time.

isRunning Returns !is.na(startTime).

reset Sets startTime to NA and totalTime to 0 seconds.

totalTime Returns the value of the totalTime field, ignoring the time elapsed between time and
startTime.

Author(s)

Russell Almond

See Also

The Timer class describes timers, and the Status class contains a collection of timers.

Methods for manipulating timers in states: timer, timerTime, and timerRunning

The functions setJS, getJS and removeJS have details about how to manipulate timers using rules.

Examples

Create the timer
stopwatch <- Timer("stopwatch")
stopifnot(isRunning(stopwatch)==FALSE,

timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:01"))==
as.difftime(0,units="mins"),
totalTime(stopwatch)==as.difftime(0,units="mins"))

Start the timer.
stopwatch <- start(stopwatch,as.POSIXct("2018-12-21 00:01"))
stopifnot(isRunning(stopwatch)==TRUE,

timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:01"))==
as.difftime(0,units="mins"),
totalTime(stopwatch)==as.difftime(0,units="mins"))

Note that time so far is based on the time argument.

Status 115

stopifnot(isRunning(stopwatch)==TRUE,
timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:10"))==
as.difftime(9,units="mins"),
totalTime(stopwatch)==as.difftime(0,units="mins"))

Pause the timer.
stopwatch <- pause(stopwatch,as.POSIXct("2018-12-21 00:10"))
stopifnot(isRunning(stopwatch)==FALSE,

timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:10"))==
as.difftime(9,units="mins"),
totalTime(stopwatch)==as.difftime(9,units="mins"))

adjust the time.
timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:10")) <-

as.difftime(10,units="mins")
stopifnot(isRunning(stopwatch)==FALSE,

timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:10"))==
as.difftime(10,units="mins"),
totalTime(stopwatch)==as.difftime(10,units="mins"))

resume the timer and adjust the time again.
stopwatch <- resume(stopwatch,as.POSIXct("2018-12-21 01:01"))
timeSoFar(stopwatch,as.POSIXct("2018-12-21 01:10")) <-

as.difftime(5,units="mins")
stopifnot(isRunning(stopwatch)==TRUE,

timeSoFar(stopwatch,as.POSIXct("2018-12-21 01:11"))==
as.difftime(6,units="mins"),
totalTime(stopwatch)==as.difftime(5,units="mins"))

Reset the timer
stopwatch <- reset(stopwatch)
stopifnot(isRunning(stopwatch)==FALSE,

timeSoFar(stopwatch,as.POSIXct("2018-12-21 00:01"))==
as.difftime(0,units="mins"),
totalTime(stopwatch)==as.difftime(0,units="mins"))

Status Status (state) object constructor

Description

The Status function is the constructor for the Status (or state) object. As Status objects are usually
read from a database or other input stream, the parseStatus function is recreates an event from a
JSON list and as.jlist encodes them into a list to be saved as JSON.

Usage

Status(uid, context, timerNames = character(), flags = list(),

116 Status

observables = list(), timestamp = Sys.time(), app = "default")
parseStatus(rec)
S4 method for signature 'Status,list'
as.jlist(obj, ml, serialize = TRUE)

Arguments

uid A character scalar identifying the examinee or player.

context A character string describing the task, item or game which the player is currently
in.

timerNames A list of names for timer objects. These are created calling Timer with each
name as an argument.

flags A named list containing internal details about the event. The necessary fields
will depend on the app and the context.

observables A named list containing external details about the event. The necessary fields
will depend on the app and the context.

timestamp The timestamp of the most recent Event processed.

app A character scalar providing a unique identifier for the application (game or as-
sessment). This defines the available vocabulary for flags timers and observables,
as well as the set of applicable Rule objects.

rec A named list containing JSON data.

obj An object of class Status to be encoded.

ml A list of fields of obj. Usually, this is created by using attributes(obj).

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

Most of the details about the Status object, and how it works is documented under Status-class.
Note that the distinction between flags and observables is mostly one of intended usage: observables
are reproted to other processes, and flags are not. Also, timers are created by their name and then
need to be specifically set.

The function as.jlist converts the obj into a named list. It is usually called from the function
as.json.

The parseStatus function is the inverse of as.jlist applied to a status object. It is designed to
be given as an argument to getOneRec and getManyRecs.

Value

The functions Status and parseStatus return objects of class status. The function as.jlist
produces a named list suitable for passing to toJSON.

Author(s)

Russell Almond

Status-class 117

References

The document “Rules Of Evidence” gives extensive documentation for the JSON layout of the
Status/State objects. https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

Betts, B, and Smith, R. (2018). The Leraning Technology Manager’s Guid to xAPI, Second Edition.
HT2Labs Research Report: https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/
#gf_26.

HT2Labs (2018). Learning Locker Documentation. https://docs.learninglocker.net/welcome/.

See Also

Status describes the state object.

buildMessage and as.json describe the JSON conversion system.

The functions getOneRec and getManyRecs use parseStatus to extract events from a database.

Examples

st <- Status("Phred","Level 0",timerNames=c("watch","stopwatch"),
flags=list("list"=list("one"=1,"two"="too"),"vector"=(1:3)*10),
observables=list("numeric"=12.5,char="foo",

"list"=list("one"="a","two"=2),"vector"=(1:3)*100),
timestamp=as.POSIXct("2018-12-21 00:01"))

st <- setTimer(st,"state.timers.stopwatch",as.difftime(15,units="secs"),TRUE,
as.POSIXct("2018-12-21 00:01"))

sta <- parseStatus(as.jlist(st,attributes(st)))
Issue with timezone
#stopifnot(all.equal(st,sta))

Status-class Class "Status"

Description

A Status object represents the state of a student (user) in the simulation. In particular, it provides
lists of flags, timers and observables whose values are updated by the Rule objects after an
Event.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://docs.learninglocker.net/welcome/

118 Status-class

Objects from the Class

Objects can be created by calls of the function Status(...). Generally, the EIEngine maintains
one status object for every student in the system.

Slots

_id: Internal database ID.

app: Object of class "character" giving an identifier for the application.

uid: Object of class "character" giving an identifier for the user or student.

context: Object of class "character" giving an identifier for the scoring context the student is
currently in.

oldContext: Object of class "character" giving an identifier for the previous scoring context. In
particluar, if this value is not equal to context it means the context has recently chagned.

timers: A named "list" of Timer objects representing events that need to be timed.

flags: A named "list" of fields representing the state of the system. Unlike observables, flags
are generally not reported outside the system.

observables: A named "list" of fields representing details of the task interaction which will be
reported outside of the evidence identification system.

timestamp: Object of class "POSIXt" giving the timestamp of the last Event processed for this
student.

Methods

as.jlist signature(obj = "Status", ml = "list"): preprocessing method used to conver the Status
into a JSON string. See as.jlist.

app signature(x = "Status"): returns the value of the context field.

context signature(x = "Status"): returns the value of the context field.

flag signature(x = "Status"): returns the list of flags associated with the status.

flag<- signature(x = "Status"): sets the list of flags associated with the status.

obs signature(x = "Status"): returns the list of observables associated with the status.

obs<- signature(x = "Status"): sets the list of observables associated with the status.

setTimer signature(x = "Status", name = "character"): sets the state of the named timer.

timer signature(x = "Status", name = "character"): returns the named timer object.

timer<- signature(x = "Status", name = "character"): sets the named timer object.

timerRunning signature(x = "Status", name = "character"): returns the running status of
the named timer.

timerRunning<- signature(x = "Status", name = "character"): sets the running status of the
named timer.

timerTime signature(x = "Status", name = "character"): returns the elapsed time of the named
timer.

timerTime<- signature(x = "Status", name = "character"): sets the elapsed time of the named
timer.

Status-class 119

all.equal.Status (target, current, ..., checkTimestamp=FALSE, check_ids=TRUE): (S3 method)
Checks for equality. The checkTimestamp flag controls whether or not the timestamp is
checked. The check_ids flag controls whether or not the database IDs are checked.

Note that the getJS and setJS functions are often used to get and set the values of the status object.

Header Fields

A Status object always has header fields. The app field references the application (assessment)
that this state belongs to. The uid field is the student (user or player) the status represents. The
timestamp field is set to the timestamp of the last event processed (after it is processed).

The context and oldContext fields operate as a pair. Before the event is processed, oldContext
is set to the current value of context. If the value of context changes (in particular, as result
of a context rule, see Rule), then this can be determined by comparing the value of context and
oldContext.

Flags and Observables

The flags and observables fields are both named collections of arbitrary R objects. The exact
values stored here will depend on the logic of the application. In general, these can be scalar
numeric, character or logical variables, vectors of the same, or more complex objects made from
named lists. It is probably not good to use formal S3 or S4 objects as these won’t be properly saved
and restored from a database.

The difference between the flags and observables is a convention that is not enforced in the
code. The observables are intended to be reported using the trigger rules (see Rule). The flags
are meant to hold intermediate values that are used to calculate observables. Nominally, status
rules are used to update flags and observable rules to update observables, but this is not enforced.

Timers

The timers field holds a named list of objects of class Timer. These behave as if they have two
settable subfields: running (or run) and time (or value).

The running virtual field is a logical field: TRUE indicates running and FALSE indicates paused.
Setting the value of the field will cause the timer to resume (start) or pause depending on the value.

The time field gives the elapsed time of the timer. Setting the field to zero will reset the timer to
zero, setting it to another value will adjust the time.

Dot (Javascript) Field Reference

Fields in the state object can be referenced using a pseudo-Javascript dot notation, where nested
components are referenced through the ‘.’ operator (which operates similarly to the R ‘$’ operator).
These all start with state. to distringuish them from fields in the event. In particular, the follwing
fields are recognized.

• state.context The current context that the state object is in.

• state.oldContext The the context of the state at the end of the previous event. In particular,
this can be compared to the context to check if the context has changed as a result of the event.
(This field should not be set by user code).

120 testRule

• state.observables.field The value of the observable named field.

• state.timers.field The the timer named field. Note that state.timers.field.time or .value
refers to the current elapsed time of the timer, and state.timers.field.run or .running is a
logical value which refers to whether or not the timer is running.

• state.flags.field The value of the observable named field.

• state.timestamp The time at which the last processed event occurred (this field is read-only).
The functions getJS and setJS are used to access the fields, and the help for those functions
contains a number of examples.

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

Author(s)

Russell Almond

See Also

Other classes in the EIEvent system: EIEngine, Context, Rule, Event, RuleTable, Timer.

The functions setJS, getJS and removeJS have details about using the dot notation to reference
fields in the status. Rule Conditions and Predicates also reference fields in the status object.

Methods for working with States: timer, timerTime, timerRunning, flag, obs, app, context,oldContext,
timestamp, parseStatus,

Examples

showClass("Status")

testRule Functions for testing rule queries.

Description

The Rule objects in an EIEngine form a program, which requires testing. These functions provide a
mechanism for testing the rules. The script gives a Status, Event and Rule object, and then checks
to see if the the rule achieves the expected result or not. The functions queryTest, predicateTest,
and ruleTest test a single rule, and the functions queryTestScript, predicateTestScript, and
ruleTestScript test a collection of rules found in a JSON file.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

testRule 121

Usage

testQuery(test)
testQueryScript(filename, suiteName = basename(filename))
testPredicate(test)
testPredicateScript(filename, suiteName = basename(filename))
testRule(test, contextSet=NULL)
testRuleScript(filename, suiteName = basename(filename), contextSet=NULL)

Arguments

test An object of class RuleTest. See details.

filename A pathname or URL giving a JSON file filled with rule tests.

suiteName A name associated with the test scripts for reporting.

contextSet A collection of contexts, used to resovle context matching issues. This should
be an object which is suitable as an argument to matchContext, either a list
or an object of class ContextSet. If contextSet is null, the context matching
is not tested.

Details

A test is a RuleTest class which has the following components:

name An identifier for the test; used in reporting.

doc Human readable documentation; reported only if verbose is TRUE.

inital An object of class Status giving the initial state of the system.

event An object of class Event giving the current event.

rule The Rule object to be tested.

queryResult A logical value indicating whether or not the Conditions of the rule are satisfied. If
this value is false, then testPredicate will skip the test.

final This should be an object of class Status. If queryResult is true, this should be the final state
of the system after the predicate is run. If queryResult is false, this should be the same as the
initial state.

The function testQuery runs checkCondition with arguments (condition(rule), initial,
event) and checks the value against queryResult.

The function predicateTest runs executePredicate with arguments (predicate(rule), initial,
event) and checks the value against final. If queryResult is false, the test does not run executePredicate
and always returns true.

The function ruleTest does the complete testing of the rules. It checks to make sure that the verb
and object of the rule and event match, and if contextSet is not null, it checks the context as well.
It then runs first checkCondition and then executePredicate if the condition returns true. The
result is checked against final.

The functions testQueryScript, testPredicateScript and testRuleScript run a suite of tests
stored in a JSON file and return a logical vector of results, with an NA if an error was generated in
the condition check or predicate execution.

122 testRule

Value

The functions testQuery, testPredicate, and testRule return a logical value indicating whether
the actual result matched the expected result. If an error is encountered while processing the rule, it
is caught and logged and NA is returned from the function.

The functions testQueryScript, testPredicateScript, and testRuleScript returns a logical
vector indicating the result of each test. The values will be true if the test passed, false if it failed
and code NA if either an error occured in either parsing or executing the test.

Logging

The results are logged using flog.logger to a logger named “EIEvent” (that is the package name).
This can be redirected to a file or used to control the level of detail in the logging. In particular,
flog.appender(appender.file("/var/log/Proc4/EIEvent_log.json"), name="EIEvent") would
log status messages to the named file. Furthermore, flog.layout(layout.json,name="EIEvent")
will cause the log to be in JSON format; useful as the inputs are logged as JSON objects which fa-
cilitates later debugging.

The amount of information can be controlled by using the flog.threshold command. In particu-
lar, flog.threshold(level,name="EIEvent"). The following information is provided at each of
these levels (this is cumulative):

FATAL Fatal errors are logged.

ERROR All errors are logged.

WARN Warnings are logged.

INFO Tests are logged as they are run, as are results. Final suite results are logged.

DEBUG Test doc strings are printed. Additional context information (rule, initial, event and final)
are printed on test failure. On errors, additional context information (rule, intial and event) are
provided along with a stack trace.

TRACE No additional information is included at this level.

Note

The functions testQuery, testPredicate, and testRule suppress errors (using withFlogging)
on the grounds that it is usually better to attempt all of the tests rather than stop at the first failure.
This is also true of testQueryScript, testPredicateScript, and testRuleScript, which also
continue after syntax errors in the test file. Certain errors, however, are not caught including errors
opening the target file and the initial JSON parsing.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

testRule 123

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

MongoDB, Inc. (2018). The MongoDB 4.0 Manual. https://docs.mongodb.com/manual/.

See Also

Rule describes the rule object, Conditions describes the conditions and Predicates describes the
predicates. The function checkCondition tests when conditions are satisfied, and executePredicate
executes the predicate. RuleTest describes the test object.

Other classes in the EIEvent system: EIEngine, Context, Status, Event, RuleTable.

Examples

Query Tests
test <- RuleTest(

name="Simple test",
doc="Demonstrate test mechanism.",
initial = Status("Fred","test",timestamp=as.POSIXct("2018-12-21 00:01:01")),
event= Event("Fred","test","rule",details=list(trophy="gold"),

timestamp=as.POSIXct("2018-12-21 00:01:01")),
rule=Rule(condition=list("event.data.trophy"="gold"),

predicate=list("!set"=c("state.observables.trophy"="event.data.trophy")),
ruleType="Observable"),

queryResult=TRUE,
final = Status("Fred","test",

observables=list("trophy"="gold"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

)
This test should succeed.
stopifnot(testQuery(test))

test1 <- RuleTest(
name="Simple test",
doc="Demonstrate test mechanism.",
initial = Status("Fred","test",timestamp=as.POSIXct("2018-12-21 00:01:01")),
event= Event("Fred","test","rule",details=list(trophy="silver"),

timestamp=as.POSIXct("2018-12-21 00:01:01")),
rule=Rule(condition=list("event.data.trophy"="gold"),

predicate=list("!set"=c("state.observables.trophy"="event.data.trophy")),
ruleType="Observable"),

queryResult=TRUE,
final = Status("Fred","test",

observables=list("trophy"="silver"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

)

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://docs.mongodb.com/manual/

124 testRule

This test should fail query check, query needs to allow gold or
silver trophies.
stopifnot(!testQuery(test1))

stopifnot(all(
testQueryScript(file.path(library(help="EIEvent")$path,"testScripts",

"CondCheck.json"))
))

Predicate Tests
testr <- RuleTest(

name="Simple set",
doc="Demonstrate predicate test mechanism.",
initial = Status("Fred","test",
timestamp=as.POSIXct("2018-12-21 00:01:01")),

event= Event("Fred","test","rule",details=list(agent="ramp"),
timestamp=as.POSIXct("2018-12-21 00:01:01")),

rule=Rule(predicate=list("!set"=c("state.observables.rampused"=TRUE)),
ruleType="Observable"),

queryResult=TRUE,
final=Status("Fred","test",observables=list("rampused"=TRUE),

timestamp=as.POSIXct("2018-12-21 00:01:01")))

stopifnot(testPredicate(testr))

testr1 <- RuleTest(
name="Simple test",
doc="Demonstrate test mechanism.",
initial = Status("Fred","test",

timestamp=as.POSIXct("2018-12-21 00:01:01")),
event= Event("Fred","test","rule",details=list(agent="ramp"),

timestamp=as.POSIXct("2018-12-21 00:01:01")),
rule=Rule(predicate=list("!set"=c("state.observables.grampused"=TRUE)),

ruleType="Observable"),
queryResult=TRUE,
final=Status("Fred","test",observables=list("rampused"=TRUE),

timestamp=as.POSIXct("2018-12-21 00:01:01")))

stopifnot(!testPredicate(testr1))

stopifnot(all(
testPredicateScript(file.path(library(help="EIEvent")$path,"testScripts",

"PredCheck.json"))
))

nocoin <- Status(uid="Test0", context="Level 84",
timestamp=as.POSIXlt("2018-09-25 12:12:28 EDT"),
observables=list(badge="none"))

scoin <- Status(uid="Test0", context="Level 84",
timestamp=as.POSIXlt("2018-09-25 12:12:28 EDT"),
observables=list(badge="silver"))

TestSet-class 125

gcoin <- Status(uid="Test0", context="Level 84",
timestamp=as.POSIXlt("2018-09-25 12:12:28 EDT"),
observables=list(badge="gold"))

nevent <- Event(app="https://epls.coe.fsu.edu/PPTest",
uid="Test0",verb="satisfied",
object="game level", context="Level 84",
timestamp=as.POSIXlt("2018-09-25 12:12:28 EDT"),
details=list(badge="none"))

sevent <- Event(app="https://epls.coe.fsu.edu/PPTest",
uid="Test0",verb="satisfied",
object="game level", context="Level 84",
timestamp=as.POSIXlt("2018-09-25 12:12:28 EDT"),
details=list(badge="silver"))

gevent <- Event(app="https://epls.coe.fsu.edu/PPTest",
uid="Test0",verb="satisfied",
object="game level", context="Level 84",
timestamp=as.POSIXlt("2018-09-25 12:12:28 EDT"),
details=list(badge="gold"))

crule <- Rule(name= "Coin Rule",
doc= "Set the value of the badge to the coin the player earned.",
verb= "satisfied", object= "game level",
context= "ALL", ruleType= "observables",
priority= 2, condition= list(event.data.badge=c("silver","gold")),
predicate= list("!set"=c(state.observables.badge =

"event.data.badge")))

stopifnot(testRule(RuleTest(name="Gold coin test",initial=nocoin,event=gevent,
rule=crule,queryResult=TRUE,final=gcoin)))

stopifnot(testRule(RuleTest(name="Silver coin test",initial=nocoin,event=sevent,
rule=crule,queryResult=TRUE,final=scoin)))

stopifnot(testRule(RuleTest(name="No coin test",initial=nocoin,event=nevent,
rule=crule,queryResult=FALSE,final=nocoin)))

stopifnot(all(
testRuleScript(file.path(library(help="EIEvent")$path,"testScripts",

"Coincheck.json"))
))

TestSet-class Class "TestSet"

126 TestSet-class

Description

This is a database stored collection of RuleTest objects. It can be used to store test suites with a
rule set. This is a stub implementation to be completed later.

Extends

All reference classes extend and inherit methods from "envRefClass".

Fields

app: Object of class character giving the identifier for the application. This is part of the database
key for the collection.

dbname: Object of class character giving the name of the database (e.g., “EIRecords”).
dburi: Object of class character giving the uri for the database, (e.g., “mongodb://localhost”).
contexts: Object of class ContextSet which gives the context information.
rules: Object of class RuleTable which gives the rules against which this test set should be run.
db: Object of class MongoDB which is the handle to the database collection. As this field is initial-

ized when first requested, it should not be accessed directly, but instead through the recorddb()
method.

Methods

testdb(): This returns the handle to the mongo collection object. If the connection has not yet
been initialized.

initialize(app, dbname, dburi, contexts, rules, db, ...): This sets up the object. Note
that the db field is not initialized until testdb() is first called.

clearAll(): Clears all records from the test collection.

Note

Not yet fully implemented, this documentation is subject to change in the next version.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the rule system. https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

runTest, EIEngine, Rule, testRule

Examples

showClass("TestSet")

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

Timer 127

Timer Constructor for Timer objects.

Description

The Timer funciton is the constructor for the Timer object. Timer objects are usually part of a
Status object. The parseTimer function recreates a timer from a JSON list and is used as part of
parseStatus.

Usage

Timer(name)
parseTimer(rec)
S4 method for signature 'Timer,list'
as.jlist(obj, ml, serialize = TRUE)

Arguments

name A character scalar giving the name of the timer. This is used for documentation
only, but it is most useful if it matches the name it is given in the Status object.

rec A named list containing JSON data.

obj An object of class Event to be encoded.

ml A list of fields of obj. Usually, this is created by using attributes(obj).

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

The Timer function creates a new timer with zero elapsed time and in the paused (not running) state.
Normally, this is not called directly, but through either the Status constructor or the setTimer
function.

The function as.jlist converts the obj into a named list. It is usually called from the as.jlist
function applied to a Status object, which is in turn usually called from as.json.

The parseTimer function is the inverse of as.jlist applied to atimer object. It is designed to be
called by the function, parseStatus, which is given as an argument to getOneRec, getManyRecs

Value

The functions Timer and parseTimer return objects of class timer. The function as.jlist pro-
duces a named list suitable for passing to toJSON.

Note

See start for information about how the timer is actually implemented.

128 Timer-class

Author(s)

Russell Almond

See Also

Timer describes the timer object, and Status describes the status object which contains it.

Methods for mainpulating timers: start, pause, resume, isRunning, totalTime, timeSoFar, and
reset

Methods for manipulating timers in states: timer, timerTime, and timerRunning

buildMessage and as.json describe the JSON conversion system.

The functions getOneRec and getManyRecs use parseEvent to extract events from a database.

Examples

sw <- Timer("stopwatch")
swa <- parseTimer(as.jlist(sw,attributes(sw)))
stopifnot(isRunning(swa)==FALSE,

timeSoFar(swa,as.POSIXct("2018-12-21 00:01"))==
as.difftime(0,units="mins"),
totalTime(swa)==as.difftime(0,units="mins"))

Start the timer.
sw <- start(sw,as.POSIXct("2018-12-21 00:01"))
swa <- parseTimer(as.jlist(sw,attributes(sw)))
Note that time so far is based on the time argument.
stopifnot(isRunning(swa)==TRUE,

timeSoFar(swa,as.POSIXct("2018-12-21 00:10"))==
as.difftime(9,units="mins"),
totalTime(swa)==as.difftime(0,units="mins"))

Pause the timer.
sw <- pause(sw,as.POSIXct("2018-12-21 00:10"))
swa <- parseTimer(as.jlist(sw,attributes(sw)))
stopifnot(isRunning(swa)==FALSE,

timeSoFar(swa,as.POSIXct("2018-12-21 00:10"))==
as.difftime(9,units="mins"),
totalTime(sw)==as.difftime(9,units="mins"))

Timer-class Class "Timer"

Timer-class 129

Description

A Timer measures the time between events in an event sequence. Rather than containing an actual
timer, it works by subtracting start and stop times from different events. Therefore “starting” a timer
sets the start time to the current time (as measured by the most recent event), and reading the elapsed
time at an event, looks at the difference between the start time and the stop time (as measured by
the current event).

Objects from the Class

Objects can be created by calls of to theTimer(...) function. They are also created by the Status
constructor when called with names for the timer objects.

Slots

name: Object of class "character" giving an identifier for the timer. Used in error reporting

startTime: Object of class "POSIXct": the time at which the timer was started. If the timer is not
running, this will be NA.

totalTime: Object of class "difftime": the total elapsed time prior to the last start/resume call.

Methods

as.jlist signature(obj = "Timer", ml = "list"): converts the Timer object into a form to be
serialized as a JSON object. See as.jlist.

isRunning signature(timer = "Timer"): returns TRUE if the timer is running and FALSE if not.

pause signature(timer = "Timer", time = "POSIXct"): Pauses the timer and sets the accumu-
lated time to the elapsed time so far.

reset signature(timer = "Timer"): Pauses the timer and sets the accumulated time to zero.

resume signature(timer = "Timer"): Puts the timer back in the running state and does not affect
the total elapsed time.

start signature(timer = "Timer"): Starts the timer.

timeSoFar signature(timer = "Timer"): Returns the elapsed time.

timeSoFar<- signature(timer = "Timer"): Sets the elapsed time.

totalTime signature(timer = "Timer"): Returns the current value of the total time field.

Details

The timer is not actually running a clock. It is instead counting the elapsed time between events.
This primarily works by setting the startTime field when the timer is “started” and then differenc-
ing this from the current time as measured by the timestamp of the currently processed Event.

This should be transparent for most uses, with one note. Methods like start, pause, resume, and
timeSoFar need to be passed the current time, so the Timer can adjust its internal state.

In the getJS and setJS functions, the timer behaves as if it has two virtual fields: .run or .running
and .time or .value. The .run field returns the value of isRunning, and setting it to FALSE will
cause the timer to pause and setting it to TRUE will cause the timer to start or resume. The .time
or .value field returns the timeSoFar field of the timer. Setting it adjusts the totalTime without
affecting the running state.

130 UserRecordSet-class

Note

For those who need a more detailed understanding, the timer works with two fields: startTime and
totalTime. Intially startTime starts as NA and totalTime is 0. On a call to start or resume, the
startTime is set to the current time. On a call to pause the difference between the startTime and
the current time (passed as an argument) is added to the totalTime, and startTime is set to NA.

This means that isRunning is essentially !is.na(startTime). If the timer is paused, the timeSoFar
is the totalTime. If the timer is running, the timeSoFar is the totalTime plus the difference be-
tween the current time (passed as an argument) and the startTime. The setter “timeSoFar<-” will
adjust startTime to the current time argument if the timer is running.

The setJS function gets the current time from the current Event object being processed, and thus
automatically takes care of the time argument.

Author(s)

Russell Almond

See Also

The funciton Timer is the constructor, and the function parseTimer builds a Timer from JSON
data.

The Status class contains a collection of timers. Other classes in the EIEvent system: EIEngine,
Context, Rule, Event, RuleTable.

The functions setJS, getJS and removeJS have details about how to manipulate timers using rules.

Methods for working with Timers: start, pause, resume, isRunning, totalTime, timeSoFar,
and reset

Methods for manipulating timers in states: timer, timerTime, and timerRunning

Examples

showClass("Timer")

UserRecordSet-class Class "UserRecordSet"

Description

A collection of user records associated with a given application; actually, a handle for the database
collection holding the user records. User records are object of class Status.

Extends

All reference classes extend and inherit methods from "envRefClass".

UserRecordSet-class 131

Fields

app: Object of class character giving the identifier for the application. This is part of the database
key for the collection.

dbname: Object of class character giving the name of the database (e.g., “EIRecords”).

dburi: Object of class character giving the uri for the database, (e.g., “mongodb://localhost”).

db: Object of class MongoDB which is the handle to the database collection. As this field is initial-
ized when first requested, it should not be accessed directly, but instead through the recorddb()
method.

Class-Based Methods

newStudent(uid): This generates a new blank status for a given student id. If there is an existing
status for the student, that is returned. If not, if there is a status with uid “*DEFAULT*”, that is
returned. If neither of those exists, a new blank status is created with context id “*INITIAL*”.

getStatus(uid): Finds the current status for a given uid.

initialize(app, dbname, dburi, db, ...): This sets up the object. Note that the db field is not
initialized until recorddb() is first called.

recorddb(): This returns the handle to the mongo collection object. If the connection has not yet
been initialized.

saveStatus(state): This saves the status in the database.

Note

This is actually a wrapper for a database collection. The collection can contain records from many
applications. The primary key for a record is (app,uid,timestamp). For a given uid and applica-
tion, the current record is the one with the most recent timestamp.

Author(s)

Russell G. Almond

References

The document “Rules Of Evidence” gives extensive documentation for the context system: https:
//pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

See Also

Status, EIEngine

Examples

showClass("UserRecordSet")

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf

132 verb

verb Accessor for verb and object field of events and rules.

Description

Both Event and Rule objects have verb, object and context fields which describe the event that
occurred or to which the rule applies. The vocabulary is given by the app field.

Usage

verb(x)
S4 method for signature 'Event'
verb(x)
S4 method for signature 'Rule'
verb(x)
object(x)
S4 method for signature 'Event'
object(x)
S4 method for signature 'Rule'
object(x)
context(x)
S4 method for signature 'Event'
context(x)
S4 method for signature 'Rule'
context(x)
S4 method for signature 'Status'
context(x)
context(x) <- value
S4 replacement method for signature 'Status'
context(x) <-value
oldContext(x)
S4 method for signature 'Status'
oldContext(x)

Arguments

x An object of class Event or Rule (or in the case of context, a Status object).

value A character scalar giving a new value for the context.

Details

The verb and object fields are fairly self-explanatory. They are simply strings which give the verb
and direct object of the activity in the presentation process which triggered the event. In the case
of an Event, these are created by the presentation process. For Rule objects, the fields indicate the
type of event for which the rule should be applicable. In particular, a rule is applicable to a certain
event when the verb and object fields match. Note that if the the verb or objecfield of thas the

verb 133

special keywork special keyword "ALL" that indicates that the rule is applicable for all verbs or
objects respectively.

The context field is a little more complex. First, the value of the context field could correspond
to a Context object or, in the case of a rule, be the keyword "ALL". For the Status (or Event) class
this should be a primative context. In the case of a Rule class, it could also be a context group,
which covers several other contexts through the belongsTo field. The rule context must match the
context field in the Status (not the Event. The rule is considered applicable if (a) the contexts
match exactly, (b) the rule context is a context set and the status context belongs to it, or (c) the rule
context is the keyword "ALL".

In some cases, the presentation process will recognize and record the context. In this case the
context field of the Event object will be of length 1. Otherwise, it will have the value character(0).
In many cases, a change of context is recognized by a “Context” rule. After the context changes,
the oldContext field retains the value of the previous context (useful for “Trigger” rules which
usually fire after a change in context). The oldContext field gets reset when the EIEngine starts
processing a new event.

Value

A character scalar giving the verb, object, or context.

Note

The xAPI format (Betts and Smith, 2018) uses “verb”s and “object”s, but they are much more
complex objects. In EIEvent, the verb and object vocabularies are driven by the app field of the
Event, and all supporting details are put in the details field.

Author(s)

Russell Almond

References

The document “Rules Of Evidence” gives extensive documentation for the JSON layout of the
Event objects. https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf.

Almond, R. G., Shute, V. J., Tingir, S. and Rahimi, S. (2018). Identifying Observable Outcomes
in Game-Based Assessments. Talk given at the 2018 Maryland Assessment Research Conference.
Slides: https://education.umd.edu/file/11333/download?token=kmOIVIwi, Video: https:
//pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4.

Betts, B, and Smith, R. (2018). The Leraning Technology Manager’s Guid to xAPI, Second Edition.
HT2Labs Research Report: https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/
#gf_26.

See Also

Objects with verb and object fields: Event, Rule

Related fields of the event object. app details

The functions setJS, getJS and removeJS provide mechanisms for accessing the fields of an event
object from Rule Conditions and Predicates.

https://pluto.coe.fsu.edu/Proc4/RulesOfEvidence.pdf
https://education.umd.edu/file/11333/download?token=kmOIVIwi
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://pluto.coe.fsu.edu/Proc4/Almond-Marc18.mp4
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26
https://www.ht2labs.com/resources/the-learning-technology-managers-guide-to-the-xapi/#gf_26

134 verb

Examples

ev2 <- Event("Phred","wash","window",
timestamp=as.POSIXct("2018-12-21 00:02:01"),
details=list(condition="streaky"))

stopifnot(verb(ev2)=="wash", object(ev2)=="window", context(ev2)==character(0))

r1 <- Rule(name="Coin Rule",
doc="Set the value of the badge to the coin the player earned.",
app="ecd://coe.fsu.edu/PPtest",
verb="satisfied", object="game level",
context="ALL",
ruleType="Observable", priority=5,
condition=list("event.data.badge"=c("silver","gold")),
predicate=list("!set"=c("state.observables.badge"=

"event.data.badge")))
stopifnot(verb(r1)=="satisfied", object(r1)=="game level",

context(r1)=="ALL")

st <- Status("Phred","Level 0",timerNames=c("watch","stopwatch"),
flags=list("list"=list("one"=1,"two"="too"),"vector"=(1:3)*10),
observables=list("numeric"=12.5,char="foo",

"list"=list("one"="a","two"=2),"vector"=(1:3)*100),
timestamp=as.POSIXct("2018-12-21 00:01"))

stopifnot(context(st)=="Level 0",oldContext(st)=="Level 0")
context(st) <- "Level 1"
stopifnot(context(st)=="Level 1",oldContext(st)=="Level 0")

Index

!addToSet (Predicates), 75
!decr (Predicates), 75
!div (Predicates), 75
!incr (Predicates), 75
!max (Predicates), 75
!min (Predicates), 75
!mult (Predicates), 75
!pop (Predicates), 75
!pullFromSet (Predicates), 75
!push (Predicates), 75
!reset (Predicates), 75
!send (buildMessages), 12
!send1 (buildMessages), 12
!send2 (buildMessages), 12
!set (Predicates), 75
!setCall (Predicates), 75
!setKeyValue (Predicates), 75
!start (Predicates), 75
!unset (Predicates), 75
∗ chron

asif.difftime, 11
setTimer, 109
start, 112
Timer, 127
Timer-class, 128

∗ classes
Context-class, 24
ContextSet-class, 26
EIEngine-class, 39
EITest-class, 47
Event-class, 51
queryResult, 79
Rule-class, 85
RuleTable-class, 90
RuleTest-class, 95
Status-class, 117
TestSet-class, 125
Timer-class, 128
UserRecordSet-class, 130

∗ class
EIEngine, 37

∗ database
Context, 22
doRunrun, 32
Event, 48
loadRulesFromList, 68
mainLoop, 69
Rule, 83
RuleTest, 92
Status, 115

∗ graphs
doRunrun, 32

∗ interface
buildMessages, 12
checkCondition, 14
Conditions, 18
Context, 22
doc, 28
doLoad, 29
doRunrun, 32
EIEngine, 37
Event, 48
executePredicate, 53
flag, 57
loadContexts, 66
matchContext, 72
Predicates, 75
Rule, 83
RuleTest, 92
ruleType, 96
Status, 115
testRule, 120
Timer, 127
verb, 132

∗ logic
checkCondition, 14
Conditions, 18
executePredicate, 53

135

136 INDEX

Predicates, 75
testRule, 120

∗ mainp
start, 112

∗ manipulation
removeJS, 81
setJS, 105

∗ manip
applicableContexts, 9
cid, 16
doc, 28
doLoad, 29
flag, 57
handleEvent, 63
loadContexts, 66
mainLoop, 69
matchContext, 72
ruleType, 96
runRule, 98
runStatusRules, 101
setTimer, 109
verb, 132

∗ objects
removeJS, 81
setJS, 105

∗ package
EIEvent-package, 3

∗ programming
runTest, 104

∗ utilities
loadRulesFromList, 68
runTest, 104

?all (Conditions), 18
?and (Conditions), 18
?any (Conditions), 18
?eq (Conditions), 18
?exists (Conditions), 18
?gt (Conditions), 18
?gte (Conditions), 18
?in (Conditions), 18
?isna (Conditions), 18
?isnull (Conditions), 18
?lt (Conditions), 18
?lte (Conditions), 18
?ne (Conditions), 18
?nin (Conditions), 18
?not (Conditions), 18
?or (Conditions), 18

?regexp (Conditions), 18
?where (Conditions), 18

all.equal.Event (Event-class), 51
all.equal.Rule (Rule-class), 85
all.equal.Status (Status-class), 117
app, 7, 26, 73, 102, 120, 132, 133
app,Context-method (cid), 16
app,EIEngine-method (EIEngine-class), 39
app,Rule-method (Rule-class), 85
app,Status-method (flag), 57
applicableContexts, 4, 9, 18, 26, 41, 87, 102
as.jlist, 22, 92, 115, 118, 129
as.jlist,Context,list-method (Context),

22
as.jlist,EITest,list-method (RuleTest),

92
as.jlist,Event,list-method (Event), 48
as.jlist,Rule,list-method (Rule), 83
as.jlist,RuleTest,list-method

(RuleTest), 92
as.jlist,Status,list-method (Status),

115
as.jlist,Timer,list-method (Timer), 127
as.json, 23, 25, 48–50, 84, 85, 89, 92, 93, 96,

116, 117, 127, 128
asif.difftime, 11
attributes, 23, 49, 84, 92, 116, 127

basename, 33
belongsTo, 42, 67, 133
belongsTo (applicableContexts), 9
belongsTo,ANY-method

(applicableContexts), 9
belongsTo,Context-method

(applicableContexts), 9
belongsTo<- (applicableContexts), 9
belongsTo<-,Context-method

(applicableContexts), 9
buildListener, 34
buildMessage, 23, 42, 50, 85, 93, 117, 128
buildMessages, 12, 77, 78, 98

CaptureListener, 43
checkCondition, 14, 18, 20, 54, 62, 64, 77,

90, 98, 99, 103, 121, 123
cid, 16, 26, 27, 73
cid,Context-method (cid), 16
clearContexts, 27, 67

INDEX 137

clearContexts (matchContext), 72
clearContexts,ContextSet-method

(matchContext), 72
clearContexts,list-method

(matchContext), 72
condition, 90
condition (ruleType), 96
condition,Rule-method (ruleType), 96
Conditions, 4, 13–15, 18, 54, 58, 59, 62, 64,

75, 78, 80, 82, 84, 85, 88, 90, 92,
95–97, 99, 103, 108, 120, 121, 123,
133

Context, 9, 10, 13, 15–18, 21, 22, 22, 23, 24,
26–28, 30, 38–40, 42, 47, 52, 54, 62,
65–67, 73, 74, 78, 82, 83, 85, 86, 90,
91, 97, 99, 103, 108, 120, 123, 130,
133

context, 12, 41, 57, 58, 90, 97, 101, 102, 120
context (verb), 132
context,Event-method (verb), 132
context,Rule-method (verb), 132
context,Status-method (verb), 132
Context-class, 23, 24
context<- (verb), 132
context<-,Status-method (verb), 132
ContextSet, 4, 23, 26, 38, 39, 42, 45–47, 66,

67, 73, 74, 91, 121
ContextSet-class, 26

data.frame, 42, 66
details, 51, 133
difftime, 11, 77, 110, 113
doc, 26, 28, 48, 90, 96, 97
doc,Context-method (doc), 28
doc,EITest-method (EITest-class), 47
doc,Rule-method (doc), 28
doLoad, 4, 29, 33, 36
doRunrun, 31, 32

EIEngine, 3–5, 7, 12, 13, 15, 19, 21, 24–26,
28, 31, 32, 36, 37, 37, 38–40, 47, 49,
51, 52, 54, 60–63, 65, 68–71, 78, 82,
85, 87, 88, 90, 91, 97, 99, 101–104,
108, 118, 120, 123, 126, 130, 131,
133

EIEngine-class, 39
EIEvent, 34
EIEvent (EIEvent-package), 3
EIEvent-package, 3

EITest, 38, 47, 48, 92, 93, 95, 104, 105
EITest (RuleTest), 92
EITest-class, 47
envRefClass, 26, 39, 90, 126, 130
Event, 3, 5, 6, 12–15, 19, 21, 24, 26, 28,

38–41, 47, 48, 48, 49–54, 59, 60, 62,
63, 65, 69, 75, 76, 78, 80, 82–88,
90–92, 95, 97–99, 101, 103, 104,
108–113, 116–118, 120, 121, 123,
127, 129, 130, 132, 133

event, 48, 96
event (queryResult), 79
event,EITest-method (EITest-class), 47
Event-class, 49, 51
executePredicate, 15, 53, 62, 64, 81, 82, 90,

98, 99, 103, 108, 121, 123

final, 48, 96
final (queryResult), 79
final,EITest-method (EITest-class), 47
flag, 43, 57, 120
flag,Status-method (flag), 57
flag<- (flag), 57
flag<-,Status-method (flag), 57
flog.logger, 6, 7, 39, 44, 45, 47, 64, 90, 91,

99, 102, 122
flog.threshold, 6, 33, 42, 44, 122
fromJSON, 4, 33, 42
futile.logger, 35

getJS, 15, 19, 58, 59, 82, 88, 107, 108, 110,
111, 114, 119, 120, 129, 130, 133

getJSfield (getJS), 59
getManyRecs, 23, 49, 50, 84, 85, 92, 93, 116,

117, 127, 128
getOneRec, 23, 49, 50, 84, 85, 92, 93, 116,

117, 127, 128

handleEvent, 38, 39, 63, 69, 71, 101

initial, 48, 96, 104
initial (queryResult), 79
initial,EITest-method (EITest-class), 47
Introduction, 25
is.difftime (asif.difftime), 11
isRunning, 111, 128–130
isRunning (start), 112
isRunning,Timer-method (start), 112

Listener, 5, 34, 43, 98

138 INDEX

ListenerSet, 4, 5, 34–40, 43, 45, 47, 91, 98
loadContexts, 27, 30, 31, 33, 42, 46, 66, 74
loadRulesFromList, 30, 31, 33, 46, 68, 91

m_id, 43
mainLoop, 5, 32, 33, 36, 38, 39, 41, 44, 45, 69
makeDBuri, 37
markAsError, 6, 44
matchContext, 27, 42, 46, 67, 72, 121
matchContext,character,ContextSet-method

(matchContext), 72
matchContext,character,list-method

(matchContext), 72
matchContext,numeric,ContextSet-method

(matchContext), 72
matchContext,numeric,list-method

(matchContext), 72
modify (Predicates), 75
mongo, 7, 27, 40, 126, 131
MongoDB, 45, 90

name, 26, 48, 90, 96, 97
name (doc), 28
name,Context-method (doc), 28
name,EITest-method (EITest-class), 47
name,Rule-method (doc), 28
newContextSet (ContextSet-class), 26
notifyListeners, 5, 12, 13, 43
notifyListeners,EIEngine-method

(EIEngine-class), 39
number, 26, 73
number (cid), 16
number,Context-method (cid), 16
number<- (cid), 16
number<-,Context-method (cid), 16

object, 41, 42, 90, 97, 102, 121
object (verb), 132
object,Event-method (verb), 132
object,Rule-method (verb), 132
obs, 43, 120
obs (flag), 57
obs,Status-method (flag), 57
obs<- (flag), 57
obs<-,Status-method (flag), 57
oldContext, 57, 58, 101, 120
oldContext (verb), 132
oldContext,Status-method (verb), 132

P4Message, 4, 5, 12, 13, 38, 47, 50–52, 87, 95,
99, 104

parseContext, 26
parseContext (Context), 22
parseEITest, 47, 48
parseEITest (RuleTest), 92
parseEvent, 52
parseEvent (Event), 48
parseRule, 4, 42, 69, 85, 90, 97
parseRule (Rule), 83
parseRuleTest, 95, 96
parseRuleTest (RuleTest), 92
parseStatus, 120, 127
parseStatus (Status), 115
parseTimer, 130
parseTimer (Timer), 127
pause, 110, 111, 128–130
pause (start), 112
pause,Timer,POSIXt-method (start), 112
POSIXt, 49, 77, 106, 113
predicate, 90
predicate (ruleType), 96
predicate,Rule-method (ruleType), 96
Predicates, 4, 13, 15, 21, 53, 54, 59, 62, 64,

75, 81, 82, 84, 85, 88, 90, 92, 97, 99,
103, 106, 108, 120, 123

priority, 90, 101, 102
priority (ruleType), 96
priority,Rule-method (ruleType), 96
Proc4, 3, 7
Proc4-package, 13
processed, 5, 40, 41, 46, 70
processEvent, 102
processEvent (handleEvent), 63
processingError, 46

queryResult, 79, 96
queryResult,RuleTest-method

(RuleTest-class), 95

receiveMessage, 5, 43
regex, 20
removeJS, 58, 62, 81, 108, 111, 114, 120, 130,

133
removeJSfield (removeJS), 81
reset, 111, 128, 130
reset (start), 112
reset,Timer-method (start), 112
resetListeners, 34

INDEX 139

resume, 111, 128–130
resume (start), 112
resume,Timer,POSIXt-method (start), 112
Rule, 4, 9, 13–15, 18, 19, 21, 24, 26, 28, 30,

38–40, 47, 49, 51–54, 58, 59, 62, 68,
69, 75, 76, 78, 80–83, 83, 84, 85,
90–92, 95–98, 101, 106, 108, 116,
117, 119–121, 123, 126, 130, 132,
133

rule, 96
rule (queryResult), 79
rule,RuleTest-method (RuleTest-class),

95
Rule-class, 84, 85
RuleTable, 4, 13, 15, 21, 38, 39, 41, 42, 45,

47, 54, 65, 68, 69, 78, 85–87, 90, 91,
97, 99, 102, 103, 120, 123, 130

RuleTable-class, 90
RuleTest, 40, 65, 68, 79, 80, 85, 90, 92, 92,

93, 95, 96, 99, 103, 121, 123, 126
RuleTest-class, 95
ruleType, 90, 96, 102
ruleType,Rule-method (ruleType), 96
runContextRules, 63, 64, 90, 99, 103
runContextRules (runStatusRules), 101
runObservableRules, 63, 64, 90, 99, 103
runObservableRules (runStatusRules), 101
runResetRules, 63, 64, 90, 99, 103
runResetRules (runStatusRules), 101
runRule, 64, 90, 98, 99, 101–103
runStatusRules, 63, 64, 90, 99, 101, 103
runTest, 104, 126
runTriggerRules, 63, 64, 90, 99, 103
runTriggerRules (runStatusRules), 101
runTRule, 64, 90, 99, 101, 103
runTRule (runRule), 98

serializeJSON, 23, 49, 84, 92, 116, 127
setJS, 53, 58, 62, 76, 82, 88, 105, 107, 110,

111, 114, 119, 120, 129, 130, 133
setJSfield (setJS), 105
setTimer, 58, 109, 127
setTimer,Status,character-method

(setTimer), 109
setTimer,Status-method (Status-class),

117
show,Context-method (Context), 22
show,EITest-method (EITest-class), 47
show,Event-method (Event-class), 51

show,Rule-method (Rule-class), 85
start, 110, 111, 112, 127–130
start,Timer,POSIXt-method (start), 112
Status, 4, 12–15, 19, 21, 24, 26, 28, 38–40,

42, 43, 47, 52–54, 57–60, 62–65, 75,
76, 78, 80–82, 84–88, 90–92, 95,
97–99, 101–111, 114, 115, 115,
116–118, 120, 121, 123, 127–133

Status-class, 116, 117
strptime, 113

TableListener, 35
testAndLoad, 30, 31, 33, 46, 91
testAndLoad (loadRulesFromList), 68
testPredicate, 54, 65, 78, 85, 89, 90, 93, 96,

99, 103
testPredicate (testRule), 120
testPredicateScript, 54, 65, 78, 85, 89, 90,

99, 103
testPredicateScript (testRule), 120
testQuery, 15, 20, 21, 65, 85, 89, 90, 93, 96,

99, 103
testQuery (testRule), 120
testQueryScript, 15, 20, 21, 65, 85, 89, 90,

99, 103
testQueryScript (testRule), 120
testRule, 13, 20, 65, 68, 78, 85, 89, 90, 93,

96, 99, 103, 105, 120, 126
testRuleScript, 13, 20, 45, 65, 68, 78, 85,

89, 90, 99, 103
testRuleScript (testRule), 120
TestSet, 38, 39, 45, 47, 48, 91, 96
TestSet-class, 125
Timer, 61, 77, 107, 109–114, 116, 118–120,

127, 127, 128–130
timer, 43, 58, 114, 120, 128, 130
timer (setTimer), 109
timer,Status-method (Status-class), 117
Timer-class, 128
timer<- (setTimer), 109
timer<-,Status-method (Status-class),

117
timerRunning, 58, 114, 120, 128, 130
timerRunning (setTimer), 109
timerRunning,Status,character-method

(setTimer), 109
timerRunning,Status-method

(Status-class), 117
timerRunning<- (setTimer), 109

140 INDEX

timerRunning<-,Status,character-method
(setTimer), 109

timerRunning<-,Status-method
(Status-class), 117

timerTime, 58, 110, 114, 120, 128, 130
timerTime (setTimer), 109
timerTime,Status,character-method

(setTimer), 109
timerTime,Status-method (Status-class),

117
timerTime<- (setTimer), 109
timerTime<-,Status,character-method

(setTimer), 109
timerTime<-,Status-method

(Status-class), 117
timeSoFar, 111, 128–130
timeSoFar (start), 112
timeSoFar,Timer,POSIXt-method (start),

112
timeSoFar<- (start), 112
timeSoFar<-,Timer,POSIXt,difftime-method

(Timer-class), 128
timeSoFar<-,Timer,POSIXt,numeric-method

(Timer-class), 128
timeSoFar<-,Timer,POSIXt-method

(start), 112
timestamp, 5, 41, 53, 69, 109, 110, 112, 113,

120
timestamp,Status-method (flag), 57
toJSON, 23, 49, 84, 93, 116, 127
toString,Context-method

(Context-class), 24
toString,EITest-method (EITest-class),

47
toString,Event-method (Event-class), 51
toString,Rule-method (Rule-class), 85
toString,RuleTest-method

(RuleTest-class), 95
totalTime, 128, 130
totalTime (start), 112
totalTime,Timer-method (start), 112

uid, 7
updateContext, 27, 67
updateContext (matchContext), 72
updateContext,Context,ContextSet-method

(matchContext), 72
updateContext,Context,list-method

(matchContext), 72

UserRecordSet, 38, 39, 43, 45–47, 63, 91
UserRecordSet (UserRecordSet-class), 130
UserRecordSet-class, 130

verb, 41, 42, 90, 97, 102, 121, 132
verb,Event-method (verb), 132
verb,Rule-method (verb), 132

withFlogging, 6, 44, 63, 99, 102, 104, 122

	EIEvent-package
	applicableContexts
	asif.difftime
	buildMessages
	checkCondition
	cid
	Conditions
	Context
	Context-class
	ContextSet-class
	doc
	doLoad
	doRunrun
	EIEngine
	EIEngine-class
	EITest-class
	Event
	Event-class
	executePredicate
	flag
	getJS
	handleEvent
	loadContexts
	loadRulesFromList
	mainLoop
	matchContext
	Predicates
	queryResult
	removeJS
	Rule
	Rule-class
	RuleTable-class
	RuleTest
	RuleTest-class
	ruleType
	runRule
	runStatusRules
	runTest
	setJS
	setTimer
	start
	Status
	Status-class
	testRule
	TestSet-class
	Timer
	Timer-class
	UserRecordSet-class
	verb
	Index

