
Package: EABN (via r-universe)
June 24, 2024

Version 0.6-2

Date 2023/06/21

Title Evidence Accumulation Bayes Net Engine

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), methods, Peanut (>= 0.8), mongo, Proc4 (>= 0.8),
withr, RNetica

Imports futile.logger, mongolite, jsonlite

Suggests PNetica, knitr, rmarkdown, tidyr

Description Extracts observables from a sequence of events.

License Artistic-2.0

URL http://pluto.coe.fsu.edu/Proc4

Collate Evidence.R StudentRec.R EAEngine.R EAEngineMongo.R
EAEngineNDB.R EngineGears.R Runners.R

VignetteBuilder knitr

Support c('Bill & Melinda Gates Foundation grant ``Games as
Learning/Assessment: Stealth Assessment'' (#0PP1035331, Val
Shute, PI)', 'National Science Foundation grant ``DIP:
Game-based Assessment and Support of STEM-related Competencies''
(#1628937, Val Shute, PI)', 'National Science Foundation grant
``Mathematical Learning via Architectual Design and Modeling
Using E-Rebuild.'' (\#1720533, Fengfeng Ke, PI)', 'Institute of
Educational Statistics Grant: ``Exploring adaptive cognitive and
affective learning support for next-generation STEM learning
games.'' (#R305A170376-20, Val Shute and Russell Almond, PIs')

Repository https://ralmond.r-universe.dev

RemoteUrl https://github.com/ralmond/EABN

RemoteRef HEAD

RemoteSha 45a946fc8d78045944befbae1bb9397d788c161f

1

http://pluto.coe.fsu.edu/Proc4

2 EABN-package

Contents
EABN-package . 2
accumulateEvidence . 5
BNEngine-class . 8
BNEngineMongo . 11
BNEngineMongo-class . 14
BNEngineNDB . 17
BNEngineNDB-class . 19
configStats . 22
doBuild . 23
doRunrun . 27
EvidenceSet . 32
EvidenceSet-class . 33
fetchSM . 35
getRecordForUser . 37
getSR . 39
history . 43
loadManifest . 45
logEvidence . 47
logIssue . 50
mainLoop . 51
observables . 53
parseEvidence . 55
parseStats . 56
parseStudentRecord . 57
setupDefaultSR . 60
sm . 62
stat . 63
StudentRecord . 64
StudentRecord-class . 66
StudentRecordSet . 68
StudentRecordSet-class . 70
trimTable . 72
updateHist . 73
updateSM . 75
updateStats . 78

Index 81

EABN-package Evidence Accumulation Bayes Net Engine

Description

Extracts observables from a sequence of events.

EABN-package 3

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

The most important object in the package is the BNEngine which does most of the work of scoring.
In particular, it takes a P4Message object containing observables, and a StudentRecord object and
updates the student record.

It comes in two variants, BNEngineMongo which links to a Mongo database, and BNEngineNDB
which processes raw messages without the database.

The functions doBuild builds the BNEngine, and the function doRunrun runs the engine on a queue
of messages in the database. The function handleEvidence processes a single evidence message.

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

See Also

Proc4 – Low level support for messaging. EIEvent – Evidence Accumulation which produces the
input messages for EABN.

Examples

cat("This sample file is available in", system.file("conf/RunEABN.R",
package="EABN"), "\n")

Not run:
library(R.utils)
library(EABN)
library(PNetica)
library(futile.logger)
library(jsonlite)

if (interactive()) {
Edit these for the local application
appStem <- "P4test"
loglevel <- ""
noprep <- FALSE
override <- FALSE

} else {
appStem <- cmdArg("app",NULL)
if (is.null(app) || !grepl("^ecd://",app))

4 EABN-package

stop("No app specified, use '--args app=ecd://...'")
loglevel <- cmdArg("level","")
noprep <- as.logical(cmdArg("noprep",FALSE))
override <- as.logical(cmdArg("override",FALSE))

}

This is the default location for INI files for Proc4 tools.
source("/usr/local/share/Proc4/EAini.R")

Assumes the path config.dir (set in the INI file) contains a file
config.json giving the location of the necessary configuration files
and network files.
EA.config <- jsonlite::fromJSON(file.path(config.dir,"config.json"),FALSE)

app <- as.character(Proc4.config$apps[appStem])
if (length(app)==0L || any(app=="NULL")) {

stop("Could not find app for ",appStem)
}
if (!(isTRUE(match(appStem,EA.config$appStem))) {

stop("Configuration not set for app ",appStem)
}

Start Netica
sess <- NeticaSession(LicenseKey=NeticaLicenseKey)
startSession(sess)

logfile <- (file.path(logpath, sub("<app>",appStem,EA.config$logname)))
if (interactive()) {

flog.appender(appender.tee(logfile))
} else {

flog.appender(appender.file(logfile))
}
flog.threshold(EA.config$logLevel)

Load extensions.
for (ext in EA.config$extensions) {

if (is.character(ext) && nchar(ext) > 0L) {
if (file.exists(file.path(config.dir,ext))) {

source(file.path(config.dir,ext))
} else {

flog.error("Can't find extension file
}

}
}

This will build the engine and run all messages in the QUEUE.

eng <- doRunrun(app,sess,EA.config,EAeng.local,config.dir,outdir,
logfile=logfile,override=override,noprep=noprep)

The engine object can now be used to process further messages or

accumulateEvidence 5

access the EABN database.

End(Not run)

accumulateEvidence Merge evidence from an evidence set with the student record.

Description

The function accumulateEvidence combines the evidence in the EvidenceSet with the exiting
beliefs in the StudentRecord, updating the student record. The function handleEvidence is a
wrapper around this which takes care of finding and updating the evidence sets.

Usage

accumulateEvidence(eng, rec, evidMess, debug = 0)
handleEvidence(eng, evidMess, srser = NULL, debug = 0)

Arguments

eng The BNEngine which controls the process.

rec The StudentRecord which will be updated.

srser A serialized version of the student record for the no-database version of the
model.

evidMess An EvidenceSet which has the evidence to be incorporated.

debug An integer flag. If greater than 1, then recover() will be called at strategic
places during the processing to allow inspection of the process.

Details

The function accumulateEvidence performs the following steps:

1. Update the student record to associate it with the new evidence (updateRecord).

2. Update the student model with the new evidence (updateSM).

3. Update the statistics for the new student model (updateStats).

4. Update the history for the new evidence (updateHist).

5. Announce the availablity of new statistics (announceStats).

6. Save the updated student record (saveSR).

The function handleEvidence is a wrapper around accumulateEvidence which finds the student
record. Note for BNEngineNDB, it is expected that the student record will be passed in as a serialized
object (see getRecordForUser). It performs the following steps:

1. Fetch the student record for the uid associated with the evidence set (getRecordForUser).

6 accumulateEvidence

2. Mark the evidence as belonging to this student record (logEvidence).

3. Update the record by calling accumulateEvidence.

4. Mark the evidence as processed (markAsProcessed).

If an error is encountered, then the error message is added to the evidence set.

Value

The modified StudentRecord which was just processed. If an error occurs during the call to
accumulateEvidence both function will return an object of class try-error instead of the stu-
dent record.

Logging, Error Handling and Debugging

The functions handleEvidence, accumulateEvidence and many of the functions they call use the
flog.logger protocol. The default logging level of INFO will give messages in response to the
announcements and warnings when an error occur. The DEBUG and TRACE levels will provide
more information about the details of the update algorithm.

The body of accumulateEvidence is wrapped in withFlogging which captures and logs errors.
This function returns an object of class try-error when an error occurs. Although handleEvidence
does not use the flogging error handler, it will still pass on the try-error if one is generated.

The debug argument can be used to pause execution. Basically, recover() will be called between
every step. This only happens in interactive mode as it just does not make sense in batch model.

Known Bugs

There is a bug in version 5.04 of Netica which causes the absorbNodes function when called with
a node that does not have display information to generate an internal Netica error. This has been
fixed with version 6.07, which is currently in beta release (Linux only).

To work around, make sure that either all nodes do not have display information, or that all do.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

See Also

Classes: BNEngine BNEngineMongo, BNEngineNDB StudentRecord, EvidenceSet

Main Loop Functions: mainLoop, getRecordForUser, logEvidence, updateRecord, updateSM,
updateStats, updateHist, announceStats, saveSR

accumulateEvidence 7

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr0 <- getRecordForUser(eng,"S1")

eap0 <- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
stopifnot(!is(sr1,'try-error'))
stopifnot(m_id(sr1)!=m_id(sr0),sr1@prev_id==m_id(sr0))
stopifnot(seqno(sr1)==1L, seqno(e1)==1L)

eap1 <- stat(sr1,"Physics_EAP")
stopifnot(abs(eap1-eap0) > .001)

8 BNEngine-class

stopifnot(nrow(history(sr1,"Physcis"))==2L)

handle Evidence.
sr1.ser <- as.json(sr1)
e2 <- EvidenceSet(uid="S2",app="Test",context="PPconjEM",

obs=list("ConjunctiveObs"="Wrong"))

sr2 <- handleEvidence(eng,e2,jsonlite::fromJSON(sr1.ser))
stopifnot(!is(sr2,'try-error'))
eap2 <- stat(sr2,"Physics_EAP")
stopifnot(uid(sr2)==uid(sr1),

m_id(sr1)==sr2@prev_id,
nrow(history(sr2,"Physics"))==3L,
abs(eap1-eap2) > .001)

<<HERE>> Need test with Mongo engine.

BNEngine-class Class "BNEngine"

Description

A generic engine for handling evidence messages (EvidenceSet objects).

Details

This is the basic class for running the evidence accumulation process. This is actually an abstract
class, there are two subclasses: BNEngineMongo, which uses the Mongo database to store student
records and as a message queue, and BNEngineNDB, which operates without a database. Note that
the BNEngine constructor generates an error.

The following functions form the core of the Engine Protocol:

loadManifest This loads the network manifest for the PnetWarehouse.
setupDefaultSR Sets up the default Student Record (used for creating new student records)
configStats Configures the statistics that are reported in the main loop.
baselineHist Sets up the baselines for histories.
mainLoop This runs through a queue of messages, handling the evidence.
handleEvidence Handles evidence from one scoring context and one user.
accumulateEvidence Does the actual work of processing the evidence.
getRecordForUser Fetches the student record for a user, essentially a call to getSR.
logEvidence Logs the evidence as part of the student record.
updateSM Updates the student model for the new evidence.
updateStats Calculates new statistics for the revised student model.
updateHist Updates the history for the revised student model.
announceStats Updates other processes about the existance of updated statistics.

BNEngine-class 9

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

app signature(x = "BNEngine"): Returns the guid identifying the application that this engine is
handling.

notifyListeners signature(sender = "BNEngine"): Notifies other processes that student records
have been updated.

fetchNextEvidence signature(eng = "BNEngine"): Returns the next unprocessed EvidenceSet
in the queue.

markProcessed signature(eng = "BNEngine", eve = "EvidenceSet"): marks the eve argument
as processed.

Fields

app: Object of class character giving an globally unique identifier for the application

srs: Object of class StudentRecordSet of NULL giving the student record set for the application.

profModel: Object of class character giving the name of the proficiency model (for the default
student record) in the warehouse manifest.

listenerSet: Object of class ListenerSet giving a set of listeners who will listen for new statis-
tics.

statistics: Object of class list containing Statistic objects to be run on every update cycle.

histNodes: Object of class character giving the names of the nodes in the proficiency model
whose history will be recorded.

warehouseObj: Object of class PnetWarehouse which stores the Bayes nets, both evidence models
and student models are stored here.

waittime: Object of class numeric giving the time in seconds the main event loop should wait
before checking again for messages.

processN: Object of class numeric giving the number of times that the main loop should run
before stopping. If Inf, then the main loop will run without stopping.

Class-Based Methods

activate(): Sets the flag to indicate that the process is running.

deactivate(): Clears the flag to indicate that the process is no longer running.

shouldHalt(): This function checks the database to see whether or not the flag is set to cause the
process to halt after processing the current record..

stopWhenFinished(): This function checks the database to see whether or not the flag is set to
cause the process to stop when the event queue is empty.

setHistNodes(nodenames): Sets the names of the history nodes. Note this should be called before
the call to baselineHist or the history nodes will not be set properly in the default student
record.

fetchNextEvidence(): Fetches the next evidence set to be handled.

10 BNEngine-class

setError(mess, e): Adds an error flag to an evidence set that generated an error.

getHistNodes(): Retrieves the history nodes.

saveStats(statmat): Updates the set of statitics associated with this engine.

studentRecords(): Fetches the StudentRecordSet associated with the engine. Note: This method
should be called instead of the raw field as it will initialize the field if it is not set up yet.

fetchStats(): Fetches statistic objects from the database.

stats(): Returns the set of Statistic objects associate with the engine.

fetchManifest(): Fetches the network manifest from the database.

setManifest(manifest): Sets the manifest for the PnetWarehouse.

saveManifest(manifest): Saves the network manifest to the database.

show(): Providse a printed representation of the database.

setProcessed(mess): Sets an evidence set message as processed.

warehouse(): Returns the PnetWarehouse associated with this engine. Again, this function should
be called in preference to directly accessing the field as it forces initialization when necessary.

evidenceSets(): A reference to the collection of evidence sets.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Subclasses: BNEngineMongo, BNEngineNDB

Constituent parts: StudentRecordSet, PnetWarehouse

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, handleEvidence, getRecordForUser, logEvidence, accumulateEvidence,
updateRecord, updateSM, updateStats, updateHist, announceStats,

Examples

showClass("BNEngine")

BNEngineMongo 11

BNEngineMongo Creates a Bayes Net Engine attached to a Mongo database.

Description

The BNEngineMongo is a BNEngine which is attached to a MongoDB database, which hold both the
queue and the StudentRecordSet.

Usage

newBNEngineMongo(app = "default", warehouse, listenerSet = NULL, processN = Inf,
statistics = list(),
dburi = "mongodb://localhost", sslops = mongolite::ssl_options(),
eadbname = "EARecords", admindbname = "Proc4", waittime = 0.25,
profModel = character(), histNodes = character(),
errorRestart = c("checkNoScore", "stopProcessing", "scoreAvailable"),
srcol = "StudentRecords",
mongoverbose = FALSE,
srs = StudentRecordSet(app = app, warehouse = warehouse,

db = MongoDB(srcol, eadbname, dburi, verbose = mongoverbose,
options = sslops)),

manifestCol = "Manifest", manifestDB = MongoDB(manifestCol,
eadbname, dburi, verbose = mongoverbose, options = sslops),

evidenceCol = "EvidenceSets", evidenceQueue = new("MongoQueue",
app = app, messDB = MongoDB(evidenceCol, eadbname, dburi,

verbose = mongoverbose, options = sslops), builder = Proc4::buildMessage),
histcol = "histNodes", histNodesDB = MongoDB(histcol, eadbname,

dburi, verbose = mongoverbose, options = sslops),
statcol = "Statistics",
statDB = MongoDB(statcol, eadbname, dburi, verbose = mongoverbose,

options = sslops),
admincol = "AuthorizedApps", adminDB = MongoDB(admincol,

admindbname, dburi, verbose = mongoverbose, options = sslops),
...)

Arguments

app A character scalar giving the globally unique identifier for the application.

warehouse A PnetWarehouse which stores the default student model and evidence models.
(It will also store the student models.

listenerSet A ListenerSet which contains the listeners for clients of the engine’s mes-
sages.

statistics Object of class list containing Statistic objects to be run on every update
cycle.

dburi A character scalar giving the login information for the mongo database. See
makeDBuri.

12 BNEngineMongo

sslops Options for SSL connections to database. See ssl_options.
eadbname The name for the EA database.
admindbname The name of the admin database used to check for shutdown requests.
processN The number of records to process before stopping. The default value Inf runs

the process until the active flag is cleared.
waittime The amout of time (in seconds) to wait before checking again for new evidence

sets when the evidence set queue is empty.
profModel The name of the proficiency model (its ID in the warehouse manifest).
histNodes A character vector giving the names of the nodes for which history will auto-

maticall be recorded.
errorRestart A character scalar describing how to handle errors. The default, "checkNoScore"

will continue scoreing to try to find additional errors, but will not report statis-
tics; the "scoreAvailable" option reports the scores based on the evidence sets
which do not produce errors. The "stopProcessing" option immediately stops
processing.

srcol A character scalar giving the name of the database backing the student record
set. Ignored if srs is specified.

mongoverbose A flag. If true, extra debugging information from database calls is generated.
srs A StudentRecordSet object for storing the student records.
manifestCol The name of the column containing the manifest data, ignored if manifestDB is

supplied.
manifestDB A JSONDB the database where manifest information is cached.
evidenceCol The name of the column containing the evidence sets, ignored if evidenceQueue

is supplied.
evidenceQueue A MessageQueue where the evidence sets exist.
histcol The name of the column into which history data should be stored, ignored if

histNodesDB is supplied.
histNodesDB A JSONDB database where history information is stored.
statcol The name of the column into which statistics should be stored, ignored if statDB

is supplied.
statDB A JSONDB database where statistics are stored.
admincol The name of the column in the administrative database where engine status in-

formation is stored, ignored if adminDB is supplied.
adminDB A JSONDB where status information about the engine is stored.
... Extra arguments are ignored. This allows arguments for other engine versions

to be set in the parameters and ignored.

Details

This creates an uninitialized BNEngine, specifically a BNEngineMongo.

The app, warehouse, and listenerSet arguments need to be supplied, for most of the rest, the
default arguments work.

In particular, most of the “db” arguments are built using the default arguments. The makeDBuri
function provides a useful shorthand for calculating the dburi field.

BNEngineMongo 13

Value

An object of calls BNEngineMongo which is capable of scoring student models.

Note

Much of this information comes from the “config.json” file, with the dburi, eadbname, admindbname,
and sslops arguments come from the “EA.ini” file.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineNDB

Constituent parts: StudentRecordSet, PnetWarehouse ListenerSet

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

Not run:
Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EATest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)
ls <- ListenerSet(sender= paste("EAEngine[",basename(app),"]"),

dbname="EARecords", dburi=makeDBuri(host="localhost"),
listeners=listeners,

14 BNEngineMongo-class

colname="Messages")

eng <- newBNEngineMongo(app=app,warehouse=Nethouse,
listenerSet=ls,
dburi=makeDBuri(host="localhost"),
dbname="EARecords",profModel="miniPP_CM",
histNodes="Physics")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

End(Not run)

BNEngineMongo-class Class "BNEngineMongo"

Description

A Bayes net engine hooked to a Mongo database.

Extends

Class "BNEngine", directly.

All reference classes extend and inherit methods from "envRefClass".

Activation

At the start of each iteration of the mainLoop, it checks eng$shouldHalt() method. If this returns
TRUE, then execution is immediately halted. When the queue is empty, it checks the eng$stopWhenFinished()
method. If this returns true, then the main loop also terminates.

The BNEngineMongo this checks the “AuthorizedApps” collection in the database to see if the cur-
rent app is active and the value of the field EAsignal. The eng$activate() method sets this field to
“Running”. If the field is set to “Halt”, then eng$shouldHalt() will return TRUE and the mainLoop
will stop after processing the current evidence set. If the field is set to “Halt” (actually, anything
other than “Running”), then eng$stopWhenFinished() will return TRUE and the mainLoop will
stop when the queue is empty.

The methods eng$activate() and eng$deactivate() set and clear the EAactive flag in the “Au-
thorizedApps” database.

BNEngineMongo-class 15

Fields

app: Object of class character giving an globally unique identifier for the application

srs: Object of class StudentRecordSet of NULL giving the student record set for the application.

profModel: Object of class character giving the name of the proficiency model (for the default
student record) in the warehouse manifest.

listenerSet: Object of class ListenerSet giving a set of listeners who will listen for new statis-
tics.

statistics: Object of class list containing Statistic objects to be run on every update cycle.

histNodes: Object of class character giving the names of the nodes in the proficiency model
whose history will be recorded.

warehouseObj: Object of class PnetWarehouse which stores the Bayes nets, both evidence models
and student models are stored here.

waittime: Object of class numeric giving the time in seconds the main event loop should wait
before checking again for messages.

processN: Object of class numeric giving the number of times that the main loop should run
before stopping. If Inf, then the main loop will run without stopping.

dburi: Object of class character giving the URI for the mongo database.

dbname: Object of class character giving the name of the database to be used.

manifestDB: Object of class MongoDB giving the collection used to store the manifest. This object
may not be initialized so it should be accessed through the class-based function manifestdb().

evidenceDB: Object of class MongoDB accessing the evidence set collection. This object may not
be initialized so it should be accessed through the class-based function evidenceSets().

statDB: Object of class MongoDB giving the statistics to use. This object may not be initialized so
it should be accessed through the class-based function statdb().

histNodesDB: Object of class MongoDB giving the history nodes. This object may not be initialized
so it should be accessed through the class-based function histNodesdb().

admindbname: Object of class character giving name admin (mongo) database, used for various
listeners and the is.active() method.

adminDB: Object of class MongoDB giving the link to the admin database. This object may not be
initialized so it should be accessed through the class-based function admindb().

Methods

activate(): Sets the flag in the admin database to indicate that the process is running.

deactivate(): Clears the flag in the admin database to indicate that the process is no longer
running.

shouldHalt(): This function checks the admin database to see whether or not the flag is set to
cause the process to halt after processing the current record..

stopWhenFinished(): This function checks the admin database to see whether or not the flag is
set to cause the process to stop when the event queue is empty.

statdb(): Returns the database contianing the statistic objects.

studentRecords(): Returns the StudentRecordSet associated with this engine.

16 BNEngineMongo-class

fetchStats(): Fetches the statistics marked in the database configuration.

initialize(app, warehouse, listeners, username, password, host, port, dbname, P4dbname, profModel, waittime, statistics, histNodes, processN, ...):
initializes the class. Note that some initialization is done in the various XXXdb() functions, so
these should be called instead of directly accessing the fields.

manifestdb(): Returns the MongoDB-class handle to the manifest information collection.

admindb(): Returns the MongoDB-class handle to the “AuthorizedApps” collection.

histNodesdb(): Returns the MongoDB-class handle to the hist nodes collection.

saveManifest(manifest): Saves the current PnetWarehouse manifest to the manifestdb() col-
lection

fetchManifest(): Retrieves the saved manifest from the manifestdb() collection.

fetchNextEvidence(): Retrieves the next EvidenceSet from the evidenceSets() collection.
Returns NULL if there are not unprocessed evidence sets.

saveStats(statmat): Saves the update statistic definitions to the statdb() collection.

setHistNodes(nodenames): Saves the history nodes to the histNodesdb() collection.

isActivated(): Checks to see if the active flag is set.

setError(mess, e): Added an error message to an evidence set.

evidenceSets(): Returns a MongoDB-class handle to the collection/queue of evidence sets.

getHistNodes(): Fetches the history nodes from the histNodesdb() collection.

show(): Provides a printed representation of the engine.

The following methods are inherited (from the corresponding class): evidenceSets ("BNEngine"),
getHistNodes ("BNEngine"), stats ("BNEngine"), setProcessed ("BNEngine"), setManifest ("BNEngine"),
activate ("BNEngine"), isActivated ("BNEngine"), saveManifest ("BNEngine"), studentRecords
("BNEngine"), saveStats ("BNEngine"), fetchNextEvidence ("BNEngine"), warehouse ("BNEngine"),
show ("BNEngine"), setHistNodes ("BNEngine"), setError ("BNEngine"), fetchManifest ("BNEngine"),
fetchStats ("BNEngine")

Note

The database connections are not created right away, so it is important to use the class-based
functions, manifestdb(), statdb(), evidenceSets(), histNodesdb(), studentRecords(), and
admindb() rather than accessing the fields directly.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

BNEngineNDB 17

See Also

Classes: BNEngine, BNEngineNDB

Constituent parts: StudentRecordSet, PnetWarehouse

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

showClass("BNEngineMongo")

BNEngineNDB Creates a Bayes net engine not attached to a database.

Description

The BNEngineNDB is a BNEngine which is not attached to the database. In particular, it cannot store
student records, so it cannot maintain state between scoring sessions without extenal help.

Usage

newBNEngineNDB(app = "default", warehouse, listenerSet = NULL,
manifest = data.frame(), processN = Inf, waittime = 0.25,
profModel = character(), statmat = data.frame(),
evidenceQueue = new("ListQueue",app, list()),
activeTest = "EAActive",
errorRestart=c("checkNoScore","stopProcessing","scoreAvailable"),
srs =StudentRecordSet(app=app,warehouse=warehouse, db=MongoDB(noMongo=TRUE)),
...)

Arguments

app A character scalar giving the globally unique identifier for the application.

warehouse A PnetWarehouse which stores the default student model and evidence models.
(It will also store the student models.

listenerSet A ListenerSet which contains the listeners for clients of the engine’s mes-
sages.

manifest A data frame providing a manifest for the PnetWarehouse.

processN The number of records to process before stopping. The default value Inf runs
the process until the active flag is cleared.

waittime The amout of time (in seconds) to wait before checking again for new evidence
sets when the evidence set queue is empty.

profModel The name of the proficiency model (its ID in the warehouse manifest).

18 BNEngineNDB

statmat A data.frame describing the statistics. See configStats.

evidenceQueue A object of class MessageQueue-class containing evidence sets to be pro-
cessed.

activeTest The pathname for the file whose existance will be used to determine when the
engine should shut down.

errorRestart A character scalar describing how to handle errors. The default, "checkNoScore"
will continue scoreing to try to find additional errors, but will not report statis-
tics; the "scoreAvailable" option reports the scores based on the evidence sets
which do not produce errors. The "stopProcessing" option immediately stops
processing.

srs A StudentRecordSet object used to manage student records.

... Extra arguments are ignored. This allows arguments for other engine versions
to be set in the parameters and ignored.

Details

This creates an uninitialized BNEngine, specifically a BNEngineNDB.

Value

An object of calls BNEngineNDB which is capable of scoring student models.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineMongo

Constituent parts: StudentRecordSet, PnetWarehouse ListenerSet

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
appid <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")

BNEngineNDB-class 19

net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",appid,"]"),
listeners=listeners)

eng <- newBNEngineNDB(app=appid,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

BNEngineNDB-class Class "BNEngineNDB"

Description

A BNEngine instance which is not connected to a database.

Extends

Class "BNEngine", directly.

All reference classes extend and inherit methods from "envRefClass".

Methods

evidence signature(x = "BNEngineNDB"): Returns list of EvidenceSets in the queue.

evidence signature(x = "BNEngineNDB", value="list"): Sets the list of EvidenceSets in the
queue.

20 BNEngineNDB-class

Activation

At the start of each iteration of the mainLoop, it checks eng$shouldHalt() method. If this returns
TRUE, then execution is immediately halted. When the queue is empty, it checks the eng$stopWhenFinished()
method. If this returns true, then the main loop also terminates.

In the no database version, the process communicates with the rest of the system by checking the
file referenced in the activeTest field. The eng$activate() creates this file with the extension
‘.running’. Renaming the file to have the extension .finish will cause eng$stopWhenFinished()
to return true, that is the mainLoop will finish when the queue is empty. Renaming the file to have
the extension .halt will cause eng$shouldHalt() to return true, and mainLoop will stop when it
finishes processing the current event.

Fields

app: Object of class character giving an globally unique identifier for the application

srs: Object of class StudentRecordSet of NULL giving the student record set for the application.

profModel: Object of class character giving the name of the proficiency model (for the default
student record) in the warehouse manifest.

listenerSet: Object of class ListenerSet giving a set of listeners who will listen for new statis-
tics.

statistics: Object of class list containing Statistic objects to be run on every update cycle.

histNodes: Object of class character giving the names of the nodes in the proficiency model
whose history will be recorded.

warehouseObj: Object of class PnetWarehouse which stores the Bayes nets, both evidence models
and student models are stored here.

waittime: Object of class numeric giving the time in seconds the main event loop should wait
before checking again for messages.

processN: Object of class numeric giving the number of times that the main loop should run
before stopping. If Inf, then the main loop will run without stopping.

manifest: Object of class data.frame which provides the manifest for the PnetWarehouse

histnodes: Object of class character which gives the names of the nodes for whom history will
be recorded.

evidenceQueue: A list of EvidenceSet events to be processed.

statmat: Object of class data.frame which gives the descriptions of the Statistic objects to be
used with the net.

activeTest: A pathname to the file whose existance will be checked to determine whether or not
the engine should be considered active.

Class-Based Methods

activate(): Creates the activeTest to indicate that the process is running.

deactivate(): Deletes the activeTest file to indicate that the process is no longer running.

shouldHalt(): This function checks the activeTest file to see whether or not the flag is set to
cause the process to halt after processing the current record..

BNEngineNDB-class 21

stopWhenFinished(): This function checks the activeTest file database to see whether or not
the flag is set to cause the process to stop when the event queue is empty.

studentRecords(): Returns the StudentRecordSet associated with this engine.
fetchStats(): Fetches the statistics marked in the database configuration.
fetchStats(): Fetches the statistics or information in the statmat field.
initialize(app, warehouse, listeners, profModel, waittime, statistics, histNodes, evidenceQueue, processN, statmat, ...):

Initializes this class
saveManifest(manifest): This sets the internal manifest field.
fetchManifest(): This returns the internal manifest field.
fetchNextEvidence(): This returns the first evidence set from the evidenceQueue field, and re-

moves that element from the queue.
saveStats(statmat): This saves the statistic table to the internal field.
evidenceSets(): This returns NULL
show(): This produces a printable summary.

The following methods are inherited (from the corresponding class): evidenceSets ("BNEngine"),
stats ("BNEngine"), setProcessed ("BNEngine"), setManifest ("BNEngine"), activate ("BNEngine"),
isActivated ("BNEngine"), saveManifest ("BNEngine"), setHistNodes ("BNEngine"), studentRecords
("BNEngine"), saveStats ("BNEngine"), fetchNextEvidence ("BNEngine"), setError ("BNEngine"),
getHistNodes ("BNEngine"), warehouse ("BNEngine"), show ("BNEngine"), fetchManifest ("BNEngine"),
fetchStats ("BNEngine")

Note

The assumption of this engine is that the serialized student model will be passed in along with the
evidence and will be returned along with the updated statistics.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineMongo

Constituent parts: StudentRecordSet, PnetWarehouse

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

showClass("BNEngineNDB")

22 configStats

configStats Configures the Statistic Objects for the BNEninge

Description

As part of the scoring cycle, the BNEngine calculates the values of certain statistics of the student
model. This function sets up those statistics.

Usage

configStats(eng, statmat = data.frame())

Arguments

eng The BNEngine to be configured.

statmat A data frame containing the statistic descriptions, see details.

Details

A Statistic is a functional that is applied to the student model (sm) of a StudentRecord. At the
end of the evidence processing cycle, the function updateStats is called to calculate new values
for the specified statistics.

The statmat argument should be a data.frame with three columns (all of mode character):

Name This column gives an identifier for the statistic used in the output message.

Fun This column gives the name of a function (see Statistic for a list of possible values) which
calculates the statistic value.

Node This gives the name of a node in the competency model which is the focus of the statistic.

If the statmat argument is not supplied, then a default value based on the engine type is used. For
the BNEngineMongo this data frame is taken from a table in the database. For the BNEngineNDB the
default statmat is stored in a field in the engine.

Value

The modified engine argument is returned.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

doBuild 23

See Also

Classes: BNEngine, Statistic updateStats, announceStats

Examples

Requires PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
activeTest="EAActive.txt")

Standard initialization methods.
configStats(eng,stattab)
stats <- eng$stats()
stopifnot(all(sapply(stats,StatName)==stattab$Name),

all(sapply(stats,function(s) s@fun)==stattab$Fun),
all(sapply(stats,function(s) s@node)==stattab$Node))

doBuild Build or rebuild the Bayes nets for a scoring engine.

Description

This function downloads the table specifications from the internet and rebuilds the Bayesian net-
works for a partilar scoring application. It takes the information from the “tables” subdirectory
(under config.dir and builds the nets in the “nets” subdirectory.

24 doBuild

Usage

doBuild(sess, EA.tables, config.dir, override = FALSE)

Arguments

sess A NeticaSession object used to build the Bayes nets.

EA.tables A list containing configuration details. See the ‘Configuration’ section below.

config.dir The pathname of the directory that contains the tables and the nets subdirecto-
ries.

override A logical flag. If true, the code will ignore locks and rebuild the nets anyway.

Details

This program applies the scripts from the Peanut-package to rebuild the nets. It assumes the
existance of five tables which describe the scoring model:

Nets.csv Manifest of all networks. See Warehouse and BNWarehouse.

Nodes.csv Manifest of all nodes in all networks. See Warehouse and NNWarehouse.

Omega.csv Description of the competency model. See Omega2Pnet.

Q.csv Description of the evidence model. See Qmat2Pnet.

Statistics.csv A description of the statistics being used. See configStats.

These are expected to reside is the “tables” subdirectory of the config.dir and have the names
described above (although these details can be overriden by the configuration, see ‘Configuration’
below).

The following steps are followed in the rebuilding.

1. The tables (CSV files) are downloaded from internet sources (see Downloading Tables below)
into the “tables” directory.

2. The tables are loaded into R and a PnetWarehouse and PnodeWarehouse are built for the
models.

3. The Omega2Pnet script is run to build the proficiency model.

4. The Qmat2Pnet script is run to build the evidence models.

5. The nets are written out the “nets” subdirectory of config.dir. The net manifest is written
to the subdirectory in the file “NetManifest.csv” and the statistic list is written in the file
“StatisticList.csv”. These values can be overrided with the configuration.

Value

This function is invoked for its side effects, which are stored in the “nets” subdirectory of the
config.dir directory.

doBuild 25

Configuration

There are a large number of parameters which can be configured. These are passed in through the
EA.tables argument, which is a list of parameters. The intention is that this can be read in from
a JSON file (using fromJSON). In the current implementation, the EA.tables parameter set is a
sub-object of the larger EA.config parameter set.

The following fields are available:

netdir This is the name of the subdirectory of config.dir in which the constructed nets will be
saved. Default value is “nets”.

tabdir This is the name of the subdirectory of config.dir in which the network specification
tables are found. The default value is “tables”.

TableID This is a parameter passed to the download script to identify the place from which the
tables should be downloaded. The intent is for this to be a Google Sheets ID such as,
“16LcEuCspZjiBoZ3-Y1R3jxi1COXmh9vuTa9GwH1A_7Q”.

downloadScript This is the name of the script which is run to download the tables. The default
value is “download.sh”. See the Downloading Tables section below.

NetsName This is the name (less the .csv extension) of the file containing the network manifest.
The default value is “Nets”.

NodesName This is the name (less the .csv extension) of the file containing the node manifest. The
default value is “Nodes”.

OmegaName This is the name (less the .csv extension) of the file containing the Omega matrix
(Proficiency model specification). The default value is “Omega”.

QName This is the name (less the .csv extension) of the file containing the Q matrix (Evidence
model specification). The default value is “Q”.

StatName This is the name (less the .csv extension) of the file containing the statistic list. The
default value is “Statistics”.

profModel This is the name of the proficiency model. If no value is supplied, the value is inferred
from the first non-missing value of the “Hub” column in the network manifest.

manifestFile The name of the file in which the list of available networks is output. The default
value is “PPManifest.csv”.

statFile The name of the file (in the “nets” directory) in which statistics list is output. The default
value is “StatisticList.csv”.

Downloading Tables

The complete specification is given in five different tables. This can be represented a five different
sheets (pages) on a typical spreadsheet program. In various projects it has been useful to create a
Google Sheets document with these five pages which can be accessed by the project team. Thus,
one team member can make changes and the other download it. (This would probably work with a
different document collaboration system, but this has not been tested.)

Google Sheets are identified by a long string in the URL. This is the “TableID” field in the EA.tables
configuration list. (In theory, this could be replaced by an appropriate identifier if something other
than Google Sheets was used.) The script “download.sh” (the name can be overriden in the config-
uration) is called using system2 with the “table” directory path and the “TableID” as arguments. It
then downloads the tables.

26 doBuild

The bash implementation for use with Google sheets is to first define a BASEURL variable: BASEURL="https://docs.google.com/spreadsheets/d/$2",
and then to call curl to download the sheets, e.g., curl "${BASEURL}/gviz/tq?tqx=out:csv&sheet={Nets}"
>Nets.csv.

In theory, the sheets could be downloaded directly from the URLs using read.csv, however, there
were issues with that solution. This solution also allows the download.sh script to take care of any
authentication which needs to be done (as the Google APIs here are a moving target).

Locking

It is probably a bad idea to rebuild the nets which a different incarnation is using the net directory
to score. It is almost certainly a bad idea for two different programs to rebuild the nets in the same
directory at the same time.

To prevent such clashes, the doRunrun function adds a file with the extension .lock to the directory
when it is scoring. The doBuild function adds the file netbuilder.lock while it is rebuilding the
nets.

If when doBuild starts, if a .lock file is found in the “nets” directory, it issues an warning, and
unless the override parameter is set to TRUE it stops. Use the override only with extreme caution.

Logging

Logging is done through the futile.logger{flog.logger} mechanism. This allows logs to be
save to a file.

Author(s)

Russell Almond

References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

doRunrun, configStats

Warehouse, BNWarehouse, NNWarehouse, Omega2Pnet, Qmat2Pnet,

Examples

This example is in:
file.path(help(package="EABN")$path,"conf","EABuild.R")
Not run:
Set up config.dir, logpath and NeticaLicenseKey
source("/usr/local/share/Proc4/EAini.R")

http://bmaw2017.azurewebsites.net/

doRunrun 27

EA.config <- jsonlite::fromJSON(file.path(config.dir,"config.json"),FALSE)

EA.tables <- EA.config$Tables
EA.tables$netdir <- EA.config$netdir

sess <- RNetica::NeticaSession(LicenseKey=NeticaLicenseKey)
startSession(sess)

futile.logger::flog.appender(appender.file(file.path(logpath,
sub("<app>","builder",EA.config$logname))))

futile.logger::flog.threshold(EA.config$loglevel)

doBuild(sess,EA.tables,config.dir)

End(Not run)

doRunrun This runs the Evidence Accumulation Bayes net engine to scor or
rescore an assessment.

Description

This is a system to run the Bayes net scoring engine, taking most of the details from a configuration
file. It creates the BNEngine instance then and then runs it in either scoring or rescoring mode.
Configuration information in taken from the EA.config and EAeng.local parameters.

Usage

doRunrun(appid, sess, EA.config, EAeng.local, config.dir,
outdir=config.dir, override = FALSE, logfile="", noprep=FALSE)

Arguments

appid A character string giving the global unique identifier for the application being
run. This is normally formatted like a URL, and basename(app) is used as a
short name.

sess A NeticaSession object to use for the Netica link.

EA.config A named list containing the configuration details. See the ‘Configuration’ sec-
tion below.

EAeng.local A named list containing additional parameters for the engine constructor. The
intention that these are local configuraiton paramete (e.g., database names and
passwords) as opposed to more global information. Note this must have an
element named “dburi” which gives the URI for the database, or which should
be blank if the no database engine is to be used.

config.dir The pathname of the directory that contains the the nets subdirectories.

outdir The pathname of the directory to which output files will be written.

override A logical flag. If true, the code will ignore locks and restart the run anyway.

28 doRunrun

logfile Name for the file in which to do logging.

noprep Logical flag. If true, then the database and listener preparation steps will be
skipped. This is for forcing a continuation without resetting the configuration.

Details

The goal is to start a run for scoring (evidence accumultion step) an assessment using the BNEngine
class. This function takes care of many of the configuration details and preparatory steps and then
calls mainLoop to do the major work. In particular, the steps done by this system are as follows:

1. Configure the listeners.

2. Configure the engine, including loading manifest and scoring list.

3. Clean old scores from the database (optional depending on configuration.)

4. Remove selected evidence sets from the collection. Import new evidence sets into the database
and mark selected evidence as unprocessed.

5. Launch engine using mainLoop.

6. Build and register the statistics and history file.

Note that this will run in either rerun mode, where it will score an selection of existing records and
stop, or in server mode where it will continue waiting for new messages until it gets a shut down
signal.

Value

This returns the engine invisibly, in case the calling program wants to do something with it.

Configuration

There are a large number of parameters which can be configured. These are passed in through the
EA.config argument, which is a list of parameters. The intention is that this can be read in from a
JSON file (using fromJSON). The RunEABN.R script loads these from a file called config.json. A
sample of this file is available on github https://github.com/ralmond/PP-EA.

The following fields are available:

ConfigName An identifier for the configuration. Default value "PP-main". Documentation only,
not used by doRunrun.

Branch The branch name for the git branch for this configuraiton. Default value "PP-main". Doc-
umentation only, not used by doRunrun.

Version A version number for the configuration. Documentation only, not used by doRunrun.

Date A edit date for the configuration. Documentation only, not used by doRunrun.

appStem A list of app stems that will be affected. Sample value ["P4Test"].

rebuildNets A logical flag, should the nets be rebuilt. Example value true.

logLevel This controls the flog.threshold. Default value "INFO". Note that doRunrun does not
set the log value, that should be done in the calling script.

logname This is the name of the file to which logs should be sent. Example value "EA_<app>0.log".
Note that doRunrun does not set the log file, that should be done in the calling script.

https://github.com/ralmond/PP-EA

doRunrun 29

Tables This is a whole object describing the EA.tables field see doBuild.

sender The sender field on output messages. Example value "EA_<app>".

lscolname The name of the column to which the listener set should log messages. Example value
"Messages".

listeners This is a list of listener descriptions. See the section ‘Listner Configuration’ below.

SRreset Logical value, should the student records be reset before running. Example value true.

listenerReset Which listeners should be reset before running. This should be a character scalar
or vector. The values should be names of listeners. The special value “Self” refers to the
ListenerSet object, and the special value “ALL” resets all listeners. See resetListeners.
Example value "ALL".

netdir The name of the subdirectory of config.dir which contains the nets. Default value "nets".

EAEngine A complex object describing engine parameters. See the section ‘Engine Configuration’
below.

filter A complex object describing how to prefilter the database. See the section ‘Database Filters’
below.

extensions This should be a list of paths (relative to config.dir) containing additional R code to
load. This is not used by doRunrun, but is supplied for use in scripts that might use doRunrun.

limitNN An integer: how many events should be processed. Two special string values are also
accepted. “ALL” will process all records currently in the database and stop. “Inf” will cause
the process to run in server mode until it is shut down.

listenerExports Information about data tables which should be exported at the end of the run. See
generateListenerExports.

A number of these values do “<app>” substitution, that is they will substitute the string “<app>”
for the short name of the application.

Listener Configruation

The listeners consist of a ListenerSet and a collection of Listener objects. The listener ob-
jects are made by using the information from the “listeners” element of the EA.config argument.
This should be a list of specifications (each specification itself is a list). These are passed to
buildListener, which provides some examples. The “listenerExports” part of the configuration is
used to call generateListenerExports when the engine stops.

The listener set is controlled by the EAeng.local$dburi value and the “lscolname” field. If dbuir
is a name of a database, then the ListenerSet is logged into the “lscolname” collection. If dburi
is null or an empty string, then the listener set will not do logging.

Engine Configruation

The type of engine used is controlled by the EAeng.local$dburi value. If this is a URI, then the
BNEngineMongo class is used. If it is null or the empty string, then the BNEngineNDB class is used
instead.

The arguments to the appropriate constructor are found between the EAeng.local and EA.config$EAEngine
collections. The intent is for the former to include details (e.g., database user names and passwords)

30 doRunrun

which are local to the server on which EABN is running, and for EA.config$EAEngine to include
more public details which are local to a particular run.
See BNEngineMongo or BNEngineNDB for the expected fields. Note that the “processN” field is taken
care of separately after the database operations (next section).

Database Filtering

The EA.config$filter field controls the database filtering process. There are four steps:

Remove old records from the database.
Import new records into the database.
Purge unused records from the database.
Reprocess Reset the processed flag to ensure records get reprocessed.

These are controlled by the following elements in the EA.config$filter list:

doRemove Logical, should records be removed before import.
remove Filter to use for removal. The value {} will remove all records for the given app.
importFile A list of filenames (in the config.dir) which contain evidence sets to be imported

before scoring.
doPurge Logical, should records be removed after import.
purge Filter for the purging (after import removal). Leaving this empty will probably not be satis-

factory.
doReprocess Logical, should existing records have the processed flag cleared? Typically TRUE for

rerun mode and FALSE for server mode.
reprocess Filter for the selected records to be marked for reprocessing. The value {} will mark all

records (for this app) for reprocessing.

Locking

It is probably a bad idea to rebuild the nets which a different incarnation is using the net directory
to score. It is almost certainly a bad idea for two different programs to rebuild the nets in the same
directory at the same time.
To prevent such clashes, the doRunrun function adds a file with the extension .lock to the directory
when it is scoring. The doBuild function adds the file netbuilder.lock while it is rebuilding the
nets.
If when doBuild starts, if a .lock file is found in the “nets” directory, it issues an warning, and
unless the override parameter is set to TRUE it stops. Use the override only with extreme caution.
The BNEngineMongo version also checks the database for a running flag. If it is found, then again
the engine will not start unless the override flag is true.

Data Files

If the value of EA.config$statListener is not null, then the final statistic values for all users are
put into a table which is exported (to the file EA.config$statfile).
If the value of EA.config$histListener is not null, then the history of all statistic values for all
users are put into a table which is exported (to the file EA.config$histfile).
Both the statfile and histfile are registered using the ListenerSet$registerOutput method.

doRunrun 31

Logging

Logging is done through the futile.logger{flog.logger} mechanism. This allows logs to be
save to a file.

The “logLevel” and “logname” fields are put in the configuration specification to assist scripts in
configuring the logging system.

Both the log file is registered using the ListenerSet$registerOutput method.

Note

This function is meant to be called by the RunEABN.R script found in the config directory. (file.path(help(package="EABN")$path,"conf","RunEABN.R"))

The shell script EABN found in the same directory will run this script.

Author(s)

Russell Almond

References

The Bobs (1983) Psychokiller. My I’m Large. Rhino Records. https://www.youtube.com/
watch?v=-Gu4PKnCLDg. (Reference is about 2:30 minutes into song.)

See Also

BNEngine, mainLoop, doBuild

resetProcessedMessages, cleanMessageQueue, importMessages

ListenerSet, buildListenerSet, generateListenerExports, resetListeners

Examples

This example is in:
file.path(help(package="EABN")$path,"conf","RunEABN.R")
Not run:
library(R.utils)
library(EABN)
library(PNetica)

appStem <- cmdArg("app",NULL)
if (FALSE) {

appStem <- "userControl"
}

source("/usr/local/share/Proc4/EAini.R")

EA.config <- jsonlite::fromJSON(file.path(config.dir,"config.json"),FALSE)

app <- as.character(Proc4.config$apps[appStem])
if (length(app)==0L || any(app=="NULL")) {

stop("Could not find app for ",appStem)
}

https://www.youtube.com/watch?v=-Gu4PKnCLDg
https://www.youtube.com/watch?v=-Gu4PKnCLDg

32 EvidenceSet

Start Netica
sess <- NeticaSession(LicenseKey=NeticaLicenseKey)
startSession(sess)

logfile <- (file.path(logpath, sub("<app>",appStem,EA.config$logname)))
if (interactive()) {

futile.logger::flog.appender(appender.tee(logfile))
} else {

futile.logger::flog.appender(appender.file(logfile))
}
futile.logger::flog.threshold(EA.config$logLevel)

eng <- doRunrun(app,sess,EA.config,EAeng.local,config.dir,outdir,
logfile=logfile)

End(Not run)

EvidenceSet Creates an Evidence Set Message

Description

An EvidenceSet is a P4Message which contains observable variables for the Bayes net engine. It
provides the observavbles associated with a single scoring context.

Usage

EvidenceSet(uid, context, timestamp = Sys.time(), obs = list(), app =
"default", mess = "Accumulate", sender = "EI", processed = FALSE)

Arguments

uid A character scalar giving unique identifier for the student/player.

context A character scalar giving a unique identifier for the scoring context (often game
level or task).

timestamp The time at which the evidence was recorded (POSIXt format).

obs A named list giving the observable variables. The names and legal values corre-
spond to the context and app values.

app A character scalar giving the globally unique identifier of the application.

mess A character scalar giving the message associated with the observables. (Part of
the Proc 4 procotol).

sender A character scalar giving the identity of the process which created the message.
This will usually be an evidence identification process.

processed A flag that is set when the evidence set has been processed.

EvidenceSet-class 33

Details

Aside from the seqno field, this is pretty much a generic P4Message. The data of the P4Message
is the observables value fo the EvidenceSet.

Value

An object of class EvidenceSet.

Author(s)

Russell Almond

See Also

Class: EvidenceSet Methods: observables, seqno, parseEvidence

Using classes: StudentRecord

Examples

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

EvidenceSet-class Class "EvidenceSet"

Description

An EvidenceSet is a collection of observables that comes from a particular context (scoring win-
dow, task). It also has information about where it appears in the sequence of evidence that is
recorded about a student. It is an extension of the P4Message class.

Objects from the Class

Objects can be created calls to the function EvidenceSet(uid, context, timestamp, obs, app,
mess, sender).

34 EvidenceSet-class

Slots

seqno: Object of class "integer" which contains the order in which this object was processed.

_id: Object of class "character" which contains the database ID.

app: Object of class "character" which gives a guid for the application.

uid: Object of class "character" which gives an id for the student.

context: Object of class "character" which gives an id for the scoring context.

sender: Object of class "character" which gives an ID for the source of the evidence.

mess: Object of class "character" which gives a message about what is contained in the message.

timestamp: Object of class "POSIXt" which tells when the evidence was collected.

processed: Object of class "logical" which is a flag to tell of the evidence has been incorporated
into the StudentRecord.

pError: Object of class "ANY" which contains processing error.

data: Named list which contains the evidence.

Extends

Class "P4Message", directly.

Methods

as.jlist signature(obj = "EvidenceSet", ml = "list"): This is a helper function used in serial-
ization. See as.json.

observables signature(x = "EvidenceSet"): returns a named list of observables (the data)
field.

seqno signature(x = "EvidenceSet"): returns the sequence number.

seqno<- signature(x = "EvidenceSet"): sets the sequence number.

show signature(object = "EvidenceSet"): prints a summary of the evidence set.

toString signature(x = "EvidenceSet"): provides a summary string for the evidence set.

Author(s)

Russell Almond

See Also

StudentRecord, accumulateEvidence, handleEvidence, logEvidence,

parseEvidence, seqno, observables

Examples

showClass("EvidenceSet")

fetchSM 35

fetchSM Fetches student model from database or JSON

Description

The function fetchSM retrieves the student model from a PnetWarehouse or if not there, attempts
to recreate it from a serialized version. The function unpackSM does this unpacking.

Usage

fetchSM(sr, warehouse)
unpackSM(sr, warehouse)

Arguments

sr An object of class StudentRecord whose student model we wish to retrieve.

warehouse A PnetWarehouse which stores the student models.

Details

The StudentRecord object has two fields related to student models: sm and smser. The former
contains the actual student model or NULL if it has not yet been initialized or restored from the
database. The latter contains a character string which contains a serialized version of the student
model. In particular, it is this serialized student model which is stored in the database, not the actual
student model.

The function fetchSM is used to set the sm field. It checks the following places in order:

1. It looks in the warehouse for a student net for the given uid for the record.

2. It calls unpackSM to unpack the serialized record.

The function unpackSM is wrapper for the function WarehouseUnpack.

Value

The function fetchSM returns the modified StudentRecord.

The function unpackSM returns the student model (a Pnet).

Author(s)

Russell Almond

See Also

StudentRecord

PnetWarehouse, WarehouseUnpack

36 fetchSM

Examples

library(PNetica)

##Start with manifest
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*")

sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

dsr <- updateStats(eng,dsr)
statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),

stringsAsFactors=FALSE)
rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)

dsr <- baselineHist(eng,dsr)
dsr@hist <- lapply(c("Physics"),

function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"

pnodenames <- names(PnetPnodes(sm(dsr)))

Serialization and unserialization
dsr.ser <- as.json(dsr)

dsr1 <- parseStudentRecord(jsonlite::fromJSON(dsr.ser))
stopifnot(is.null(sm(dsr1)))
at this point, SM has not yet been restored.

It is there in the serial field
net1 <- unpackSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(net1))))

getRecordForUser 37

dsr1 <- fetchSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(sm(dsr1)))))

Try this again, but first delete net from warehouse,
So we are sure we are building it from serialized version.
WarehouseFree(Nethouse,PnetName(sm(dsr)))

dsr1 <- parseStudentRecord(jsonlite::fromJSON(dsr.ser))
stopifnot(is.null(sm(dsr1)))
at this point, SM has not yet been restored.

It is there in the serial field
net1 <- unpackSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(net1))))
dsr1 <- fetchSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(sm(dsr1)))))

getRecordForUser Gets or makes the student record for a given student.

Description

The BNEngine contains a StudentRecordSet, which is a collection of StudentRecord objects.
The function getRecordForUser fetches one from the collection (if it exists) or creates a new one.

Usage

getRecordForUser(eng, uid, srser = NULL)

Arguments

eng The BNEngine in question.
uid A character scalar giving the unique identifier for the student.
srser A serialized version of the student record. Used to extract the student record in

database-free mode. This should either be a list which is the output of fromJSON
or NULL.

Details

The student record set can either be attached to a database (the dburi field passed to StudentRecordSet
is non-empty, or not. In the database mode, recrods are saved in the database, so that they can be re-
trieved across sessions. In the database-free mode, the serialized student record (if it exists) should
be passed into the getRecordForUser function.

If no student record is available for the uid, then a new one is created by cloning the default student
record (see setupDefaultSR).

This function mostly just calls getSR on the StudentRecordSet; however, if a new record is gen-
erated, then announceStats is called to advertise the baseline statistics for the new user.

38 getRecordForUser

Value

The StudentRecord object is returned.

Warning

Calling this multiple times will not return the same student record. In particular, the student model
associated with the old version of the record could be replaced with a new version, rendering the
student model in the old records inactive. Be careful when dealing with old records.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

BNEngine, StudentRecordSet, StudentRecord

handleEvidence, setupDefaultSR, fetchSM, getSR

Examples

library(PNetica)

##Start with manifest
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),

as.is=TRUE)
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= "EAEngine[Test]",
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app="Test",warehouse=Nethouse,
listenerSet=ls,manifest=netman,

getSR 39

profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman1)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr0a <- getRecordForUser(eng,"Student1")
sr0 <- getRecordForUser(eng,"Student1")
This is announcing twice, so not quite working with NDB engine.

stopifnot(is.active(sm(sr0)),!is.active(sm(sr0a)))
stopifnot(all.equal(stats(sr0),stats(sr0a)))
eap0<- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="Student1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
stopifnot(m_id(sr1)!=m_id(sr0),sr1@prev_id==m_id(sr0))
stopifnot(seqno(sr1)==1L, seqno(e1)==1L)

eap1 <- stat(sr1,"Physics_EAP")
stopifnot(abs(eap1-eap0) > .001)
stopifnot(nrow(history(sr1,"Physcis"))==2L)

sr1.ser <- as.json(sr1)
WarehouseFree(Nethouse,PnetName(sm(sr1))) # Delete student model to

force restore.
sr1a <- getRecordForUser(eng,"Student1",jsonlite::fromJSON(sr1.ser))
#PnetCompile(sm(sr1a))
eap1a <- stat(sr1a,"Physics_EAP")
stopifnot(abs(eap1-eap1a) < .001)
stopifnot(nrow(history(sr1a,"Physcis"))==2L)

<<Here>> Need test with Mongo engine

getSR Save and retrieve student records from a record set.

40 getSR

Description

A StudentRecordSet is a collection of StudentRecord objects. The function getSR fetches one
from the collection if it exists. The function newSR creates a new one. The function saveSR saves
the student record, and clearSRs clears out the saved student records.

Usage

getSR(srs, uid, ser = "")
newSR(srs, uid, timestamp = Sys.time())
saveSR(srs, rec)
clearSRs(srs)

Arguments

srs The StudentRecordSet in question.

uid A character scalar giving the unique identifier for the student.

ser A serialized version of the student record. Used to extract the student record in
database-free mode. This should either be a list which is the output of fromJSON
or NULL.

rec A StudentRecord to be saved.

timestamp A POSIXt datetime indicating the last modification date of the record.

Details

The student record set can either be attached to a database (the dburi field passed to StudentRecordSet
is non-empty, or not. In the database mode, recrods are saved in the database, so that they can be re-
trieved across sessions. In the database-free mode, the serialized student record (if it exists) should
be passed into the getSR function.

The functions operate as follows:

getSR If the ser argument is not NULL, then the serialized student record is used to fetch the student
record. Otherwise, the database (if it exists) is searched for a student record with the proper
application and user ids. Then fetchSM is called to fetch the student model. If both of those
methods fail, it returns NULL.

newSR This creates a new StudentRecord from the defaultSR field of the student record set (see
setupDefaultSR). The function saveSR is called to save the new record.

saveSR If the database exists, the student record is saved to the database. Otherwise, if no m_id
exists for the record one is created from the uid and seqno.

clearSRs In database mode, it clears the database. Otherwise, nothing is done.

Value

The functions getSR, newSR and saveSR return the student record or NULL if the record was not
found or created.

The function clearSRs returns the student record set (its argument).

getSR 41

Author(s)

Russell Almond

See Also

Classes: BNEngine, StudentRecordSet, StudentRecord

Functions: handleEvidence, setupDefaultSR, fetchSM, StudentRecordSet

Examples

Not run:
Requires PNetica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

tr1 <- newSR(eng$studentRecords(),"Test1")
PnetCompile(sm(tr1))
stopifnot(uid(tr1)=="Test1",abs(stat(tr1,"Physics_EAP")) < .0001)
stopifnot(is.na(m_id(tr1))) # id is NA as it has not been saved yet.

42 getSR

tr1 <- saveSR(eng$studentRecords(),tr1)
m_id(tr1)
stopifnot(!is.na(m_id(tr1))) # Now set

sr0 <- getRecordForUser(eng,"S1")

eap0 <- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
stopifnot(m_id(sr1)!=m_id(sr0),sr1@prev_id==m_id(sr0))
stopifnot(seqno(sr1)==1L, seqno(e1)==1L)

eap1 <- stat(sr1,"Physics_EAP")
stopifnot(abs(eap1-eap0) > .001)
stopifnot(nrow(history(sr1,"Physcis"))==2L)

sr1.ser <- as.json(sr1)
WarehouseFree(Nethouse,PnetName(sm(sr1))) # Delete student model to

force restore.

sr1a <- getSR(eng$studentRecords(),"S1",fromJSON(sr1.ser))
PnetCompile(sm(sr1a))
eap1a <- stat(sr1a,"Physics_EAP")
stopifnot(abs(eap1-eap1a) < .001)
stopifnot(nrow(history(sr1a,"Physcis"))==2L)

End(Not run)
Not run:
<<Here>> Need test with Mongo implementation
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

history 43

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=mongo::MongoDB("Messages","EARecords", makeDBuri()),
registryDB=mongo::MongoDB("OutputFiles","Proc4",makeDBuri()),
listeners=listeners)

eng <- newBNEngineMongo(app=app,warehouse=Nethouse,
listenerSet=ls,
profModel="miniPP_CM",
histNodes="Physics",
dburi=makeDBuri(),
dbname="EARecords",admindbname="Proc4")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

End(Not run)

history Retrieves node histories from a Student Record

Description

A history is a data.frame whose rows correspond to EvidenceSet objects and whose columns
correspond to the states of a Pnode. Each row is a probability distribution, and they show the
changes to the probabilities over time.

The function history returns the history for a single node in a given StudentRecord. The function
histNames returns the names of the nodes for which the record has history information.

Usage

history(sr, name)
histNames(sr)

Arguments

sr A StudentRecord whose history is to be accessed.

name The name of the node whose history is requested.

44 history

Details

When the student record is first initialized, the function baselineHist is called to setup “*BASE-
LINE*” values for each of the history nodes identified by the BNEngine. These are data.frame
objects giving the prior marginal distributions for each of the identified variables.

After the student model is updated in response to evidence (see handleEvidence, the updateHist
function is called to add a new row to each of the data frames.

The histNames function returns the names of the history nodes being tracked by a student model.
The history function returns the history for a node.

Value

The function histNames returns a list of node names. These are suitable for the name argument of
the history function.

The function history returns a data frame with rows corresponding to evidence sets and columns
corresponding to states of the variables. Each row is a marginal probability distribution.

Note

These are designed to work with the functions woeHist and woeBal in the CPTtools-package.

Author(s)

Russell Almond

See Also

StudentRecord for student records.

baselineHist and updateHist for history construction.

BNEngine for specifying the history nodes.

woeHist and woeBal for applications.

Examples

library(PNetica)

##Start with manifest
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)
dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",

loadManifest 45

context="*Baseline*")
sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))
dsr <- updateStats(eng,dsr)

statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),
stringsAsFactors=FALSE)

rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)
stat(dsr,"Physics_EAP")
stat(dsr,"Physics_Margin")

dsr <- baselineHist(eng,dsr)

dsr@hist <- lapply(c("Physics"),
function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"
stopifnot(histNames(dsr)=="Physics")
history(dsr,"Physics")

loadManifest Loads the mainifest for the compentency and evidence models in the
BNEngine

Description

This sets the manifest of networks used in the scoring engine. In particular, it sets the WarehouseManifest
of the PnetWarehouse associated with a BNEngine.

Usage

loadManifest(eng, manifest = data.frame())

Arguments

eng A BNEngine whose manifest is to be set.

manifest A dataframe containing a network manifest (see BuildNetManifest). If miss-
ing, then the manifest will be retrieved from the database or other cached source.

46 loadManifest

Details

The BNEngine requires a proficiency or competency model (which is used to build student mod-
els) and a collection of evidence models (one for each scoring context) which are all expressed as
Pnets. The manifest is basically a table of which evidence model networks go with which scoring
contexts. The proficienty model usually serves as the hub in the hub-and-spoke framework. (In fact,
if the profModel argument is not supplied when the BNEngine is built, the engine will look for a
network which has no hub in the manifest.

In fact, the manifest is part of the PnetWarehouse which is a field of the engine. It should have the
format associate with manifests described in WarehouseManifest. Note that the Bayes nets should
have already been built, so the the warehouse should point to where they can be loaded from the
filesystem on demand.

For the BNEngineMongo, the default manifest is located in a table in the database. If no manifest is
supplied, then the manifest is read from the database. For the BNEngineNDB, the manifest must be
specified manually when the engine is contructed (or when loadManifest is called).

Value

This function returns the engine argument.

Note

The loadManifest call is part of the initialization sequence for the BNEngine. However, if the
manifest is loaded into the PnetWarehouse as it is built, it is really redundant.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineMongo, BNEngineNDB, PnetWarehouse

Functions: WarehouseManifest, BuildNetManifest

Examples

Not run:
Requires PNetica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

logEvidence 47

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Deliberately build warehouse without empty manifest.
Nethouse <- PNetica::BNWarehouse(session=sess,

address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

stopifnot(nrow(WarehouseManifest(eng$warehouse())) == 0L)

Standard initialization methods.
loadManifest(eng,netman)
stopifnot(nrow(WarehouseManifest(eng$warehouse())) == 5L)

End(Not run)

logEvidence Handle the relationship between evidence sets and student records.

Description

A StudentRecord differs from the baseline student record according to how many EvidenceSet
objects have been incorporated into the estimate. These functions tie and student record and evi-
dence set together.

Usage

logEvidence(eng, rec, evidMess)
seqno(x)
seqno(x) <- value
evidence(x)
evidence(x) <- value

48 logEvidence

Arguments

eng A BNEngine which is currently not used (could later be used to save the evidence
to a database).

rec A StudentRecord into which the evidence will be incorporated.

evidMess A EvidenceSet which will be associated with the student record.

x An EvidenceSet object.

value For seqno(x) <- value, an integer giving a new sequence number. For evidence(x)
<- value, a character vector giving the sequence of evidence ID.

Details

There are several fields in the StudentRecord class which need to be updeated in the face of new
evidence.

context and timestamp These needs to be set to the values in the new evidence message.

seqno This needs to be incremented.

evidence The new evidence needs to be prepended to this list.

prev_id and "_id" The prev_id needs to point to the old field and the "_id" is set to NA (it will be
updated on save).

In the case of the BNEngineMongo, the IDs in question are the database ids for these objects so that
they can be easily found. The function m_id For the BNEngineNDB case presumably some external
system is issuing IDs to evidence sets and student records.

The evidence field of a StudentRecord is a list of IDs (m_id) for the accumulated evidence.

The seqno field is an optional ordering used to track the order in which evidence sets were incor-
porated into the student model. The value of seqno gives the number of evidence sets incorporated
into the recrod.

The logEvidence function sets the sequence number of the evidence message to one more than the
last sequence number for the student record. If no m_id exists for the record (no database mode),
then one is generated by concatenating the uid and the seqno.

Value

The updateRecord returns a new StudentRecord object, which points back to the old one.

The logEvidence function returns the modified EvidenceSet.

The function seqno returns an integer (or NA if has not been set).

The function evidence returns a character vector giving the IDs (m_id) of the encorpated evidence
sets.

Note

This is largely untested code for future fast retraction of evidence.

The prev_id field of the StudentRecord should leave a trace of previous student records in the
database, including old serialized models. This should allow the scoring engine to quickly jump
back in time.

logEvidence 49

The evidence field provides a list of the m_ids of all the incorporated evidence sets. This should
enable one or more evidence sets to be replaced and the student model to be recalculated.

Author(s)

Russell Almond

See Also

BNEngine, EvidenceSet, EvidenceSet StudentRecord, handleEvidence P4Message

Examples

sess <- RNetica::NeticaSession()
RNetica::startSession(sess)
Nethouse <- PNetica::BNWarehouse(sess=sess)

recset <- StudentRecordSet(warehouse=Nethouse,db=MongoDB(noMongo=TRUE))

sr0 <-
StudentRecord("S1","*baseline*",as.POSIXct("2020-03-30 09:00:00"))

seqno(sr0) <- 0
sr0 <- saveSR(recset,sr0) # Sets the m_id

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

stopifnot(is.na(seqno(e1)), seqno(sr0)==0L)
stopifnot(length(evidence(sr0))==0L)

e1 <- logEvidence(NULL,sr0,e1)
stopifnot(seqno(e1)==1L,!is.na(m_id(e1)))

sr1 <- updateRecord(sr0,e1)
stopifnot(is.na(m_id(sr1)),sr1@prev_id==m_id(sr0))
sr1 <- saveSR(recset,sr1) # Sets the m_id

stopifnot(length(evidence(sr1))==1L,any(m_id(e1)==evidence(sr1)))
stopifnot(context(sr1)==context(e1),timestamp(sr1)==timestamp(e1))

e2 <- logEvidence(NULL,sr1,e2)
stopifnot(seqno(e2)==2L,!is.na(m_id(e2)))

sr2 <- updateRecord(sr1,e2)
stopifnot(is.na(m_id(sr2)),sr2@prev_id==m_id(sr1))
sr2 <- saveSR(recset,sr2) # Sets the m_id

stopifnot(length(evidence(sr2))==2L,any(m_id(e2)==evidence(sr2)))
stopifnot(context(sr2)==context(e2),timestamp(sr2)==timestamp(e2))

50 logIssue

logIssue Manage error messages associated with a StudentRecord.

Description

The function logIssue() adds an issue to a StudentRecord. The function getIssues() returns a
list of issues.

Usage

logIssue(sr, issue)
S4 method for signature 'StudentRecord,ANY'
logIssue(sr,issue)
S4 method for signature 'StudentRecord,character'
logIssue(sr,issue)
getIssues(sr)
S4 method for signature 'StudentRecord'
getIssues(sr)

Arguments

sr A StudentRecord object to be examined or modified.

issue An issue to be logged. This should be a character object or something which
can be coerced to a character object.

Details

The idea is to be able to log error messages and warning which occur when processing evidence for
this person. These are converted to strings, so they can be saved

Value

The function getIssues() returns a character vector containing the encountered issues.

The function logIssue() returns the modified student record.

Author(s)

Russell Almond

See Also

StudentRecord, markAsError

mainLoop 51

Examples

sr0 <-
StudentRecord("S1","*baseline*",as.POSIXct("2020-03-30 09:00:00"))

sr0 <- logIssue(sr0,"Test Issue")
err <- simpleError("Another test error.")
sr0 <- logIssue(sr0,err)
getIssues(sr0)

mainLoop This function loops through the processing of evidence sets.

Description

The mainLoop is used when the BNEngine is used as a server. It checks the queue (database or
internal list), for unprocessed EvidenceSet objects, and calls handleEvidence on them in the
order of their timestamps. As a server, this is potentially an infinite loop, see details for ways of
gracefully terminating the loop.

Usage

mainLoop(eng, N=NULL)

Arguments

eng An BNEngine which will handle the evidence sets.

N If supplied, this should be an integer. The loop will then handle that many cycles
before quitting.

Details

The evidenceQueue field of the BNEngine class is an object of type MessageQueue. All events
have a processed field which is set to true when the evidence set is processed. The function
fetchNextMessage fetches the oldest unprocessed evidence set, while markAsProcessed sets the
processed flag.

The mainLoop function iterates over the following steps.

1. Fetch the oldest unprocessed Event: eve <- fetchNextMessage(eng).

2. Process the evidence set: out <- handleEvidence(eng,eve). (Note: this expression will al-
ways return. If it generates an error, the error will be logged and an object of class try-error
will be returned.)

3. Mark the event as processed: markAsProcessed(eng,eve).

52 mainLoop

At its simplest level, the funciton produces an infinite loop over these three statements, with some
additional steps related to logging and control.

First, if the event queue is empty, the process sleeps for a time given by eng$waittime and then
checks the queue again. At the same time, it checks status of the active flag for the process using
the eng$stopWhenFinished() call. If this returns true and the queue is empty, processing will
terminate.

To facilitate testing, the field eng$processN can be set to a finite value. This number is decremented
at every cycle, and when it reaches 0, the mainLoop is terminated, whether or not their are any
remaining events to be processed. Setting eng$processN to an infinite value, will result in an
infinite loop that can only be stopped by using the active flag (or interrupting the process).

Value

There is no return value. The function is used entirely for its side effects.

Activation

When the loop begins, it calls the eng$activate() method to mark the engine as active. When
the loop finishes (outside of the main try/catch block, so it should always return), it calls the
eng$deactivate() method to signal that the engine has terminated.

External processes can signal the engine through the eng$shouldHalt() and eng$stopWhenFinished().
The former is checked every iteration, and the main loop halts when it becomes true. This allows
for an immediate stop when needed. The latter is checked only when the queue is empty and details
whether or not the process should continue to wait for more messages in the queue.

Database Engine. For the Mongo engine (BNEngineMongo) the communication channel is the
AuthorizedApps collection in the administrative database. In particular, the EAsignal field is
read by both methods. The eng$activate() method changes the value of that field to “Running”.
Changing the value of the field to “Halt” will cause the eng$shouldHalt() to be true triggering
a halt before processing the next evidence set. Changing the value of that field to “Finish” will
eng$stopWhenFinished() to be true, causing the loop to stop then the queue is empty.

The following command issues from the Mongo shell will shut down the server for an application
containing the string "appName" as part of its name (note “Halt” could be replaced with “finish”).

db.AuthorizedApps.update({app:{$regex:"appName"}}, {$set:{"EAsignal":"Halt"}});

No Database Engine. For the Mongo engine (BNEngineMongo) the communication channel is
a file named activeTest. The name (extension) of this file is changed to produce the signals.
The eng$activate() method creates it with the extension .running. Changing the extension to
.finish or .halt will send the appropriate signal. The eng$deactive() method removes the file.

Note

Currently, when running in server model (i.e., with eng$processN set to infinity), there are two
ways of stopping the engine: a clean stop after all events are processed using the active flag, and
an immediate stop, possibly mid cycle, by killing the server process. It became apparent during
testing that there was a need for a graceful but immediate stop, i.e., a stop after processing the
current event. This should appear in later versions.

observables 53

Author(s)

Russell Almond

See Also

BNEngine, BNEngineMongo, BNEngineNDB, MessageQueue

fetchNextMessage, handleEvidence, markAsProcessed

Examples

Not run:
From EABN.R script

app <- "ecd://epls.coe.fsu.edu/P4test"
loglevel <- "DEBUG"

source("/usr/local/share/Proc4/EAini.R")
futile.logger::flog.appender(appender.file(logfile))
futile.logger::flog.threshold(loglevel)

sess <- NeticaSession(LicenseKey=NeticaLicenseKey)
startSession(sess)
listeners <- lapply(names(EA.listenerSpecs),

function (ll) do.call(ll,EA.listenerSpecs[[ll]]))
names(listeners) <- names(EA.listenerSpecs)

eng <- do.call(BNEngineMongo,
c(EAeng.params,list(session=sess,listeners=listeners),

EAeng.common))
loadManifest(eng)
configStats(eng)
setupDefaultSR(eng)

Activate engine (if not already activated.)
eng$activate()
mainLoop(eng)
Wait for cows to come home.

End(Not run)

observables Access parts of an evidence set message.

Description

The function observables access the list of observables contained in this EvidenceSet. The func-
tion seqno access the order in which the evidence sets were incorporated into the student record.

54 observables

Usage

observables(x)

Arguments

x An EvidenceSet object.

Details

The observables function access the data field of the underlying P4Message. This should be a
named list of values that the BNEngine knows how to process.

Value

The function observables returns a named list of observable values.

Author(s)

Russell Almond

See Also

EvidenceSet, EvidenceSet StudentRecord, handleEvidence P4Message

Examples

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

stopifnot(all.equal(observables(e1),
list("CompensatoryObs"="Right")))

stopifnot(all.equal(observables(e2)$Attempts,2))

stopifnot(is.na(seqno(e1)))
seqno(e1) <- 1
stopifnot(seqno(e1)==1L)

parseEvidence 55

parseEvidence Convert EvidenceSet objects to and from JSON

Description

The as.json function takes an EvidenceSet (among other objects) and turns it into JSON. The
function parseEvidence takes the list produced as the output to fromJSON and turns it back into an
EvidenceSet object.

Usage

parseEvidence(rec)
S4 method for signature 'EvidenceSet,list'
as.jlist(obj, ml, serialize=TRUE)

Arguments

rec A list which comes from running fromJSON on a JSON string, or database ex-
traction method.

obj The object being serialized; usually attributes(obj).

ml A list of fields of the object.

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

See the description for as.json for more description of the JSON conversion prototocl.

The parseEvidence method is designed to be used with the getOneRec and getManyRecs functions
for fetching information from the database.

Value

The function parseEvidence returns an object of class EvidenceSet.

The as.jlist method returns a list which can be passed to toJSON to produce legible JSON from
the R object.

Author(s)

Russell Almond

See Also

EvidenceSet, as.json, getOneRec, getManyRecs

56 parseStats

Examples

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

e1.ser <- as.json(e1)
e1a <- parseEvidence(jsonlite::fromJSON(e1.ser))
e2.ser <- as.json(e2)
e2a <- parseEvidence(jsonlite::fromJSON(e2.ser))

stopifnot(all.equal(e1,e1a), all.equal(e2,e2a))

parseStats Functions for (un)serializing stats from student records.

Description

The functions unparseStats and stats2json serialize the statistics as a JSON record. The func-
tion parseStats reverses the process.

Usage

parseStats(slist)
unparseStats(slist, flatten=FALSE)
stats2json(slist, flatten=FALSE)

Arguments

slist A list of statistics. For parseStats this should be the output of fromJSON. For
the others, this is just a list of statistic values.

flatten If true, then vector-valued statistics (i.e., PnodeMargin, will have their values
flattened into scalars. If not they will be left as vectors.

Details

The function unparseStats massages the list of statistics so it will be output in clean JSON (in
particular, using unboxer to make sure scalars appear as scalars and not vectors). The function
stats2json is just toJSON(unparseStats(slist)).

If flatten is true, then vector value statstics will be flattened. For example, if the statistic “Physics_Margin”
has three values with labels “High”, “Medium”, and “Low”, then it will be replaced with three statis-
tics with the names “Physics_Margin.High”, “Physics_Margin.Medium”, and “Physics_Margin.Low”.

The function parseStatistics is designed to reverse the process.

parseStudentRecord 57

Value

The function unparseStats returns a list which is ready to be passed to toJSON. In particular,
scalars are marked using unboxer.

The function stats2json returns a string containing the JSON.

The function parseStats returns a list of statistics values. this is suitable for being set to the stats
field of the StudentRecord object.

Note

When using flatten=TRUE, avoid periods, ‘.’, in the names of statistics, as this marker is used to
recreate the nested structure in parseStats.

Author(s)

Russell Almond

See Also

buildObject gives general information about how the parsing/unparsing protocol works.

Statistic gives a list of available statistics.

StudentRecord talks about the statitic fields of the student records.

Examples

stats <- list(Physics_EAP=0,EnergyTransfer_EAP=.15,
Physics_Margin=c(High=1/3,Medium=1/3,

Low=1/3))
stats2json(stats)

stats1 <- parseStats(ununboxer(unparseStats(stats)))
stopifnot(all.equal(stats,stats1,tolerance=.0002))

stats2json(stats,flatten=TRUE)

stats2 <- parseStats(ununboxer(unparseStats(stats,flatten=TRUE)))
stopifnot(all.equal(stats,stats2,tolerance=.0002))

parseStudentRecord Covert Student Records to/from JSON

Description

The as.json function takes an StudentRecord (among other objects) and turns it into JSON. The
function parseStudentRecord takes the list produced as the output to fromJSON and turns it back
into an StudentRecord object.

58 parseStudentRecord

Usage

parseStudentRecord(rec)
S4 method for signature 'StudentRecord,list'
as.jlist(obj, ml, serialize=TRUE)

Arguments

rec A list which comes from running fromJSON on a JSON string, or database ex-
traction method.

obj The object being serialized; usually attributes(obj).

ml A list of fields of the object.

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

See the description for as.json for more description of the general JSON conversion prototocl.

The StudentRecord contains a Pnet field in the student model. This takes some post-processing to
to properly restore.

The as.jlist method for the StudentRecord serializes the sm field using the PnetSerialize
method. This produces a slob (string large object) which is stored in the smser field of the StudentRecord.

The parseStudentRecord function restores the smser field, but not the sm field. This must be done
in the context of the StudentRecordSet, or equivalently the PnetWarehouse, which is currently
managing the networks. To finish the process, call fetchSM to restore the student model network.

Value

The function parseStudentRecord returns a student record object with the student model not yet
initialized.

The as.jlist method returns a list which can be passed to toJSON to produce legible JSON from
the R object.

Author(s)

Russell Almond

See Also

StudentRecord, as.json, getOneRec, getManyRecs

fetchSM, PnetSerialize

Examples

Requires PNetica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()

parseStudentRecord 59

RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

recset <- eng$studentRecords()

sr0 <- getRecordForUser(eng,"S1")
eap0 <- stat(sr0,"Physics_EAP")

sr0.ser <- as.json(sr0)
sr0a <- parseStudentRecord(jsonlite::fromJSON(sr0.ser))
sr0a <- fetchSM(sr0a,recset$warehouse())
This should relink to the same student model
stopifnot(sm(sr0a)==sm(sr0),abs(eap0-stat(sr0a,"Physics_EAP")) <.0001)

Next add some evidence and test again.

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
eap1 <- stat(sr1,"Physics_EAP")
sr1.ser <- as.json(sr1)

60 setupDefaultSR

Force delete student model to make sure that it is properly
recovered.
WarehouseFree(Nethouse,PnetName(sm(sr1)))
stopifnot(!is.active(sm(sr1))) # No longer active.

sr1a <- parseStudentRecord(jsonlite::fromJSON(sr1.ser))
sr1a <- fetchSM(sr1a,recset$warehouse())
eap1a <- stat(sr1a,"Physics_EAP")
stopifnot(all(evidence(sr1)==evidence(sr1a)),

abs(eap1-eap1a) <.001)

setupDefaultSR Set up the Default Student Record for an StudentRecordSet

Description

The default student record is a field associated with a StudentRecordSet which provides a template
student record for a student just staring the assessment. The setupDefaultSR function needs to be
called at the start of every scoring session to initialize the defaultSR field of the student record set.

Usage

setupDefaultSR(eng)

Arguments

eng A BNEngine which contains the student record details.

Details

This function creates a new StudentRecord object with the special uid “*DEFAULT*” and the
special context ID “*Baseline*”. The student model is actually the competency or proficiency
model: the baseline student model giving the population distribution of the the measured proficien-
cies. This is fetched by name from the PnetWarehouse attached to the engine; the name is given in
the profModel field of the eng.

Setting up a default student record actually takes a number of steps:

1. The student record set (eng$studentRecrods()) is cleared by calling clearSRs.
2. A new blank student record (uid="*DEFAULT*") is created.
3. The sm field of the new student record is initialized to the proficiency model.
4. The student model is compiled (PnetCompile).
5. The baseline statisics are calculated (updateStats).
6. The baseline history is set (baselineHist).
7. The default student record is saved in the defaultSR field of the StudentRecordSet and in

the database (saveSR).
8. The baseline statistics are announced (announceStats).

setupDefaultSR 61

Value

This function is called for its side effects.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, StudentRecord, StudentRecordSet, PnetWarehouse

Functions: clearSRs, PnetCompile, updateStats, baselineHist, saveSR, announceStats

Examples

Requires PNetica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)

62 sm

eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

defrec <- eng$studentRecords()$defaultSR

stopifnot(uid(defrec)=="*DEFAULT*", app(defrec)==app(eng),
context(defrec)=="*Baseline*",
PnetName(sm(defrec))==eng$profModel)

sm Access the student model (Pnet) associated with a studnet record

Description

A characteristic of the EABN model is that each code StudentRecord is associated with a student
model–a Pnet which tracks our knowledge about the student’s knowledge skills and abilities. The
function sm accesses the net.

Usage

sm(x)
sm(x) <- value

Arguments

x An object of class StudentRecord whose student model will be accessed.

value A Pnet object which will be the new student model.

Value

The function sm returns an object which implements the Pnet protocol, or none is the student model
has not been generated.

The setter version returns the student record.

Author(s)

Russell Almond

See Also

fetchSM, unpackSM, setupDefaultSR

stat 63

Examples

library(PNetica)

##Start with manifest
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*")

sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

stat Access statistics from a Student Record

Description

These functions access the stats field of a StudentRecord object. The function stat accesses a
single statistics and stats returns all of the statistics. The function statNames returns the names
of the available statistics.

Usage

stat(sr, name)
stats(x)
statNames(sr)

Arguments

sr, x A StudentRecord object whose statsitics are to be accessed.

name A character object giving the name of the specific statististic to access.

Value

The function stat returns the value of a single statistic, which could be numeric, character or
something else.

The function stats returns a named list of statistics.

The function statNames returns a character vector.

64 StudentRecord

Author(s)

Russell Almond

See Also

StudentRecord for the student record class.

Statistic for statistic objects which return the statistics.

Examples

stats <- list(Physics_EAP=0,EnergyTransfer_EAP=.15,
Physics_Margin=c(High=1/3,Medium=1/3,

Low=1/3))

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*",stats=stats)

stats(dsr)
stopifnot(all.equal(stats,stats,tolerance=.0002))

statNames(dsr)
stopifnot(all(statNames(dsr)==names(stats)))

stat(dsr,"Physics_Margin")
stopifnot(all.equal(stat(dsr,"Physics_Margin"),stats[[3]],tolerance=.0002))

StudentRecord Constructor for StudentRecord object

Description

This is the constructor for a StudentRecord object. Basically, this is a wrapper around the studnet
model for the appropriate user, with meta-data about the evidence that has been absorbed.

Usage

StudentRecord(uid, context = "", timestamp = Sys.time(), smser = list(),
sm = NULL, stats = list(), hist = list(), evidence = character(),
app = "default", seqno = -1L, prev_id = NA_character_)

StudentRecord 65

Arguments

uid A user identifier for the student/player.

context An identifer for the scoring context/window.

timestamp Timestamp of the last evidence set absorbed for this user.

smser A serialized Bayesian network (see WarehouseUnpack).

sm A Pnet containing the student model (or NULL if it has not been initialized.

stats A list of statistics calculated for the model.

hist A list of node histories for the measured nodes.

evidence A character vector of ids for the absorbed evidence sets.

app A guid (string) identifying the application.

seqno A sequence number, basically a count of absorbed evidence sets.

prev_id The database ID of the previous student model.

Value

An object of class StudentRecord.

Author(s)

Russell Almond

See Also

StudentRecord

Examples

library(PNetica)

##Start with manifest
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*")

sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

66 StudentRecord-class

dsr <- updateStats(eng,dsr)
statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),

stringsAsFactors=FALSE)
rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)
stat(dsr,"Physics_EAP")
stat(dsr,"Physics_Margin")

dsr <- baselineHist(eng,dsr)

dsr@hist <- lapply(c("Physics"),
function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"
history(dsr,"Physics")

Serialization and unserialization
dsr.ser <- as.json(dsr)

dsr1 <- parseStudentRecord(jsonlite::fromJSON(dsr.ser))
dsr1 <- fetchSM(dsr1,Nethouse)

dsr and dsr1 should be the same.
stopifnot(
app(dsr)==app(dsr1),
uid(dsr)==uid(dsr1),
context(dsr)==context(dsr1),

problems with timezones
all.equal(timestamp(dsr),timestamp(dsr1)),
all.equal(seqno(dsr),seqno(dsr1)),
all.equal(stats(dsr),stats(dsr1),tolerance=.0002),
all.equal(history(dsr,"Physics"),history(dsr1,"Physics")),
PnetName(sm(dsr)) == PnetName(sm(dsr))

)

StudentRecord-class Class "StudentRecord"

Description

This is a wrapper for the Bayesian network information for a particular student. It contains a local
copy of the Bayesian network.

StudentRecord-class 67

Objects from the Class

Objects can be created by calls to the function StudentRecord, uid, context, timestamp, smser,
sm, stats, hist, evidence).

Slots

_id: Object of class "character" The mongo ID of the object, empty character if it has not been
saved in the database. If Mongo is not being used, this field can be used for other kinds of IDs.

app: Object of class "character" that gives the identifier for the application this record is used
with.

uid: Object of class "character" which is the unique identifier for the user (student, player).

context: Object of class "character" which identifies the scoring context (scoring window).

evidence: Object of class "character" giving the IDs of the evidence sets applied to this student
model.

timestamp: Object of class "POSIXt" giving the timestamp of the last evidence set applied to this
model.

sm: Object of class "Pnet", the actual student model (or NULL if it is not yet built).

smser: Object of class "list" the serialized student model.

seqno: Object of class "integer" a sequence number, that is the number of evidence sets applied.

stats: Object of class "list" the most recent statistics generated from this model.

hist: Object of class "list" list of history lists for the designed history variables. There is one
element for each history variable.

issues: A character vector giving errors and warnings from processing evidence for this record.

prev_id: Object of class "character" the Mongo ID of the previous student model.

Methods

app signature(x = "StudentRecord"): returns the application id associated with this record.

as.jlist signature(obj = "StudentRecord", ml = "list"): serialized the record as JSON

context signature(x = "StudentRecord"): return the context (scoring window) identifier asoci-
ated with the last processed evidence set.

evidence signature(x = "StudentRecord"): returns the ids of the aborbed evidence sets.

evidence<- signature(x = "StudentRecord"): sets the ids of the aborbed evidence sets.

histNames signature(sr = "StudentRecord"): returns the names of the history variables.

history signature(sr = "StudentRecord", name = "character"): returns the history list for
the variable.

seqno signature(x = "StudentRecord"): returns the sequence number for this record.

seqno<- signature(x = "StudentRecord"): sets the sequence number for this record.

show signature(object = "StudentRecord"): prints the record.

sm signature(x = "StudentRecord"): returns the Bayes net (Pnet) associated with this record.

sm<- signature(x = "StudentRecord", value="ANY"): sets the Bayes net (Pnet) associated
with this record.

68 StudentRecordSet

stat signature(sr = "StudentRecord", name = "character"): returns the current value of the
named statistics.

statNames signature(sr = "StudentRecord"): returns the names of the statistics.

stats signature(x = "StudentRecord"): returns all of the statistics.

timestamp signature(x = "StudentRecord"): returns the timestamp of the last absorbed evi-
dence set.

toString signature(x = "StudentRecord"): creates a printed representation.

uid signature(x = "StudentRecord"): returns the ID for the student/player.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 13.

See Also

StudentRecord, EvidenceSet, StudentRecordSet

Examples

showClass("StudentRecord")

StudentRecordSet Constructor for “StudentRecordSet” class

Description

A StudentRecordSet is a collection of collection of StudentRecord objects. It is always con-
nected to a PnetWarehouse and could be connected to a database as well.

Usage

StudentRecordSet(app = "default", warehouse = NULL,
db=MongoDB("StudentRecords","EARecords"),...)

Arguments

app A character scalar providing a guid for the application.

warehouse An object of type PnetWarehouse that contains already built student models.

db A JSONDB object which store the student records.

... Other arguments for future extensions.

StudentRecordSet 69

Details

A StudentRecordSet is a collection of student recrods. It contains a PnetWarehouse which con-
tains the student models and possibly a database containing the student records.

The StudentRecordSet operates in two modes, depending on the value of db. If db references
a MongoDB-class database, then the StudentRecordSet set will save student records (including
serialized Bayes nets) to the database and restore them on demmand. This facilitates scoring across
several sessions.

If the db argument has the noMongo flag, no database connection will be created. Instead, the calls to
the getSR function should pass in a serialized version of the student record function. If no serialized
record is available, a new record will be created.

Value

An object of class StudentRecordSet.

Author(s)

Russell Almond

See Also

StudentRecordSet, StudentRecord, getSR, saveSR, newSR, clearSRs

Examples

library(PNetica)

##Start with manifest
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

Setup to test without Mongo
SRS <- StudentRecordSet(app="Test",warehouse=Nethouse,

db=mongo::MongoDB(noMongo=TRUE))
stopifnot(!mdbAvailable((SRS$recorddb())))

Setup default SR
dsr <- StudentRecord("*DEFAULT*",app="Test",

context="*Baseline*")
sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

70 StudentRecordSet-class

dsr <- updateStats(eng,dsr)
statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),

stringsAsFactors=FALSE)
rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)

dsr@hist <- lapply(c("Physics"),
function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"

SRS$defaultSR <- dsr
saveSR(SRS, dsr)

Make a new Student Record for a student.
sr1 <- newSR(SRS,"S1")
stopifnot(uid(sr1)=="S1",app(sr1)==app(dsr),

all.equal(stats(dsr),stats(sr1),.0002))

sr1a <- getSR(SRS,"S1")

clearSRs(SRS)

StudentRecordSet-class

Class "StudentRecordSet"

Description

This class provides a collection of student records. Optionally, it can be hitched to a database so
that student can be saved and restored across scoring sessions.

Details

The StudentRecordSet exists to hold a collection of StudentRecord objects. If, when constructed,
the record set is passed information about a database, the record set is stored in the database. If not,
it is merely stored in memory. The database version, in particular, allows restoring the object from
memory. The primary key for the student record in the database is the app ID (which is a field in
the record set) and the uid which is passed through the getSR method.

The method getSR takes different arguments based on which version is passed. In particular, the
ser argument allows a serialized (JSON) version of the data to be passed in. In particular, getSR
will do one of the following things (in order of priority):

StudentRecordSet-class 71

1. If the ser argument is supplied, the student record will be restored from this.

2. If the StudentRecordSet is connected to a database, then the student record is restored from
information in the database, based on the uid argument and the app field.

3. A new student record is created for the uid.

The record set also contains a link to a PnetWarehouse which it uses to try and find the Pnet
associated with the StudentRecord. If the Pnet already exists in the warehouse, it is just connected
to the fetched record. If not, then it is restored from a serialized version either from the passed in
serialized record, or from the serialized Pnet in the database.

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

app signature(x = "StudentRecordSet"): Returns the application this record set is associated
with.

getSR signature(srs = "StudentRecordSet", uid="ANY",ser="character"): Returns the stu-
dent record for the specified ID. If ser is supplied it should be a json list object containing the
student record.

newSR signature(srs = "StudentRecordSet", uid="character"): Creates a new Student Record
for the specified ID by cloning the default student record.

saveSR signature(srs = "StudentRecordSet"): If connected to a database, the SR is saved to
the database.

clearSR signature(srs = "StudentRecordSet"): If connected to a database, the SR in the database
are cleared.

Fields

app: Object of class character which contains the application identifier

dbname: Object of class character which contains the name of the database.

db: Object of class JSONDB a connection to the database or NULL if the object is not connected to
the database. Users should call the recorddb() function rather than access this field directly.

warehouse: Object of class PnetWarehouse which contains already loaded nets.

defaultSR: Object of class StudentRecord or NULL. This is the default student record which is
cloned to create new studnet records.

Class-Based Methods

initialize(app, dbname, dburi, db, warehouse, ...): Initializes the student record set.

recorddb(): Returns the database handle (if connected to a database) or NULL if not connected to a
database. Note that this initializes the database the first time it is called, so it should be called
rather than accessing the db field directly.

clearAll(clearDefault=FALSE): Clears all records from the database and the warehouse. If
clearDefault==FALSE, then the default record is not cleared.

72 trimTable

Author(s)

Russell Almond

See Also

StudentRecordSet for the constructor. StudentRecord for the contained objects.

PnetWarehouse and Pnet for information about the contained Bayesian networks.

BNEngine for the engine that holds it.

Examples

showClass("StudentRecordSet")

trimTable Trims empty columns from tables.

Description

Downloaded spreadsheets sometimes contain empty columns at the end. This function removes all
of the columns after the give column.

Usage

trimTable(tab, lastcol = "Description")

Arguments

tab A matrix, data frame or tibble to be trimmed).
lastcol The name of the last column to keep. Any column to the right of this one will

be discarded.

Value

The first several columns of the table.

Author(s)

Russell Almond

See Also

read.csv

Examples

dat <- data.frame(One=1:3,Two=4:6,Three=7:9,10:12)
trimmed <- trimTable(dat,"Three")
stopifnot (ncol(trimmed)==3L)

updateHist 73

updateHist Update the node history in a student record

Description

The StudentRecord object can track the history of zero or more Pnode in the student model (sm).
The history is a data frame with columns corresponding to the states of the variables and the rows
corresponding to the EvidenceSets absorbed into the student record. The function updateHist add
a new row to each history corresponding to the evidence set. The function baselineHist creates
the initial row.

Usage

updateHist(eng, rec, evidMess, debug = 0)
baselineHist(eng, rec)

Arguments

eng The BNEngine controlling the operation.

rec The StudentRecord which will be updated.

evidMess The EvidenceSet which has just been added to the student model using updateSM.

debug An integer flag. If bigger than 1, then a call to recover will be made inside the
function call.

Details

A history tracks a single node in the student model as it changes in response to the incomming
evidence sets. The history for a node is data frame with columns representing variable states and
rows representing evidence sets (evidence from different scoring windows or tasks).

The function baselineHist is called as part of setupDefaultSR. This initializes a history data
frame for each node in the histNodes field of the BNEngine. It inserts a first row, which is always
given the name “*Baseline*”. The values in the first row are the marginal distribution of those
nodes (PnodeMargin).

The function updateHist adds row to each history table. The name of the row corresponds to the
context field of the EvidenceSet. The value is the curent marginal distribution for the history
nodes.

The function history retrieves the history. The functions woeHist and woeBal in the CPTtools-package
describe possible applications for the history function.

Value

Both functions return the modified StudentRecord

74 updateHist

Note

With the Netica implementation, the student model needs to be compiled (PnetCompile(sm(rec)))
before the baselineHist function is run.

This is probably true of updateHist as well, but updateSM recompiles the network.

Author(s)

Russell Almond

References

Madigan, Mosurski and Almond, (1997). Graphical explanation in belief networks. Journal of
Computational and Graphical Statistics, 6, 160–181.

Almond, Kim, Shute and Ventura (2013). Debugging the evidence chain. Proceeings of the 2013
UAI Application Workshops (UAI2013AW). 1–10. CEUR workshop proceedings, vol 1024. http:
//ceur-ws.org/Vol-1024/paper-01.pdf

See Also

Classes: BNEngine, EvidenceSet StudentRecord

Functions in EABN: accumulateEvidence, updateStats, updateSM, history

Peanut Functions: PnodeMargin

CPTtools Functions woeHist, woeBal

Examples

Requires PNetica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

http://ceur-ws.org/Vol-1024/paper-01.pdf
http://ceur-ws.org/Vol-1024/paper-01.pdf

updateSM 75

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes(character())
configStats(eng,stattab)
setupDefaultSR(eng)

sr1 <- getRecordForUser(eng,"S1")
history(sr1,"Physics")
stopifnot(is.null(history(sr1,"Physics")))

Now set up history.
eng$setHistNodes("Physics")
PnetCompile(sm(sr1))
sr1 <- baselineHist(eng,sr1)
history(sr1,"Physics")
stopifnot(nrow(history(sr1,"Physics"))==1L)

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

sr1 <- updateSM(eng,sr1,e1)
sr1 <- updateHist(eng,sr1,e1)

e2 <- EvidenceSet(uid="S1",app="Test",context="PPconjEM",
obs=list("ConjunctiveObs"="Wrong"))

sr1 <- updateSM(eng,sr1,e2)
sr1 <- updateHist(eng,sr1,e2)

history(sr1,"Physics")
stopifnot(nrow(history(sr1,"Physcis"))==3L)
woeHist(history(sr1,"Physics"),pos="High",neg=c("Medium","Low"))

updateSM Updates the Student model with additional evidence.

Description

This function is the core of the EABN algorithm. It finds and attaches the evidence model to the stu-
dent model, enters the findings from the evidence message, and then detaches the evidence model,
leaving the student model updated.

76 updateSM

Usage

updateSM(eng, rec, evidMess, debug = 0)

Arguments

eng The BNEngine supervising the opeeration.

rec The StudentRecord for the student in question.

evidMess The EvidenceSet containing the new evidence.

debug An integer describing how much debugging to do. If set to a number greater than
1, it will issue a call to recover at various stages to aid in debugging models.

Details

The update algorithm performs the following step:

1. Finds the evidence model by name according to the context field of the EvidenceSet. See
WarehouseSupply.

2. Adjoins the sm of the student record with the evidence model and compiles the modified
network. See PnetAdjoin and PnetCompile.

3. Loops over the observables in the evidence set, if they correspond to nodes in the evidence
model, then instantiate their values using PnodeEvidence.

4. Detatch the evidence model and recompile the network. See PnetDetach.

Value

The updated student record is returned.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

See Also

Classes: BNEngine, PnetWarehouse, StudentRecord, EvidenceSet, Pnet

Functions in EABN: accumulateEvidence, updateHist, updateStats, getRecordForUser

Peanut Functions: WarehouseSupply, PnetAdjoin, PnetCompile, PnetDetach, PnodeEvidence

updateSM 77

Examples

Not run:
Requires Netica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr1 <- getRecordForUser(eng,"S1")
PnetCompile(sm(sr1))
eap1 <- PnodeEAP(sm(sr1),PnetFindNode(sm(sr1),"Physics"))

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

sr1a <- updateSM(eng,sr1,e1)
eap1a <- PnodeEAP(sm(sr1),PnetFindNode(sm(sr1),"Physics"))
This should have changed.
stopifnot(abs(eap1-eap1a) > .001)

End(Not run)

78 updateStats

updateStats Recalculates statistics for changed student model.

Description

When the student model of a StudentRecord changes, because the function updateSM has been
run, the statistics need to be recalculated. The function updateStats recalculates the statistics.
The function announceStats lets the listeners know that new statistics are available for this user.

Usage

updateStats(eng, rec, debug = 0)
announceStats(eng, rec)

Arguments

eng A BNEngine controlling the operation.

rec A StudentRecord, particularly, one that has just been updated via a call to
updateSM.

debug An integer flag. If the value is greater than 1, there will be a call recover inside
of the call.

Details

The BNEngine contains a number of Statistic objects. Every time the student model (sm) of the
StudentRecord changes, the stats of the record need to be updated as well.

The function updateStats simply loops through the statistic collection and calculates the new
values. The corresponding field of the student record is then updated.

The function announceStats takes the new statistic values and generates a P4Message containing
the new statistics. This is sent to all of the Listener objects in the ListenerSet attached to the
engine.

The function stats returns the latest statistics from the student record.

Value

The function updateStats returns the updates StudentRecord object.

The function announceStats is called for its side effects. Its return value should not be used.

Author(s)

Russell Almond

updateStats 79

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

See Also

Classes: BNEngine, ListenerSet StudentRecord, Statistic, P4Message

Functions in EABN: accumulateEvidence, updateHist, updateSM, stats

Peanut Functions: calcStat

Proc4Functions notifyListeners

Examples

Requires PNetica
library(PNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
db=MongoDB(noMongo=TRUE), listeners=listeners)

eng <- newBNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr0 <- getRecordForUser(eng,"S1")

80 updateStats

eap0 <- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

sr1 <- updateRecord(sr0,e1)
sr1 <- updateSM(eng,sr1,e1)
sr1 <- updateStats(eng,sr1)
eap1 <- stat(sr1,"Physics_EAP")

This should have changed.
stopifnot(abs(eap1-eap0) > .001)

announceStats(eng,sr1)
Look at the resulting message.
cl$lastMessage()
details(cl$lastMessage())
stopifnot(uid(cl$lastMessage())=="S1",context(cl$lastMessage())=="PPcompEM")

Index

∗ Bayesian Network
EABN-package, 2

∗ Scoring Engine
EABN-package, 2

∗ attribute
logIssue, 50

∗ classes
BNEngine-class, 8
BNEngineMongo-class, 14
BNEngineNDB-class, 19
EvidenceSet, 32
EvidenceSet-class, 33
StudentRecord-class, 66
StudentRecordSet-class, 70

∗ class
StudentRecordSet, 68

∗ database
doRunrun, 27
getSR, 39
mainLoop, 51

∗ error
logIssue, 50

∗ graphs
accumulateEvidence, 5
BNEngineMongo, 11
BNEngineNDB, 17
doRunrun, 27
fetchSM, 35
history, 43
sm, 62
updateSM, 75

∗ graph
StudentRecord, 64
StudentRecord-class, 66
updateHist, 73
updateStats, 78

∗ interface
accumulateEvidence, 5
BNEngineMongo, 11

BNEngineNDB, 17
doBuild, 23
doRunrun, 27
EvidenceSet, 32
fetchSM, 35
getSR, 39
loadManifest, 45
parseEvidence, 55
parseStats, 56
parseStudentRecord, 57
updateStats, 78

∗ manip
accumulateEvidence, 5
configStats, 22
doBuild, 23
getRecordForUser, 37
history, 43
loadManifest, 45
logEvidence, 47
mainLoop, 51
observables, 53
setupDefaultSR, 60
sm, 62
stat, 63
trimTable, 72
updateHist, 73
updateSM, 75
updateStats, 78

∗ package
EABN-package, 2

accumulateEvidence, 5, 8, 10, 13, 17, 18, 21,
34, 74, 76, 79

announceStats, 5, 6, 8, 10, 13, 17, 18, 21, 23,
37, 60, 61

announceStats (updateStats), 78
app,BNEngine-method (BNEngine-class), 8
app,StudentRecord-method

(StudentRecord-class), 66

81

82 INDEX

app,StudentRecordSet-method
(StudentRecordSet-class), 70

as.jlist,EvidenceSet,list-method
(parseEvidence), 55

as.jlist,StudentRecord,list-method
(parseStudentRecord), 57

as.json, 34, 55, 57, 58

baselineHist, 8–10, 13, 17, 18, 21, 44, 60, 61
baselineHist (updateHist), 73
BNEngine, 3, 5, 6, 11–14, 17–19, 21–23, 27,

28, 31, 37, 38, 41, 44–46, 48, 49, 51,
53, 54, 60, 61, 72–74, 76, 78, 79

BNEngine (BNEngine-class), 8
BNEngine-class, 8
BNEngineMongo, 3, 6, 8, 10, 11, 11, 12, 13, 18,

21, 22, 29, 30, 46, 48, 52, 53
BNEngineMongo-class, 14
BNEngineNDB, 3, 5, 6, 8, 10, 13, 17, 17, 18, 22,

29, 30, 46, 48, 53
BNEngineNDB-class, 19
BNWarehouse, 24, 26
buildListener, 29
buildListenerSet, 31
BuildNetManifest, 45, 46
buildObject, 57

calcStat, 79
cleanMessageQueue, 31
clearSRs, 60, 61, 69
clearSRs (getSR), 39
clearSRs,StudentRecordSet-method

(StudentRecordSet-class), 70
configStats, 8, 10, 13, 17, 18, 21, 22, 24, 26
context, 60, 73
context,StudentRecord-method

(StudentRecord-class), 66

doBuild, 3, 23, 29, 31
doRunrun, 3, 26, 27, 30

EABN (EABN-package), 2
EABN-package, 2
EIEvent, 3
envRefClass, 9, 14, 19, 71
evidence (logEvidence), 47
evidence,BNEngineNDB-method

(BNEngineNDB-class), 19
evidence,StudentRecord-method

(StudentRecord-class), 66

evidence<- (logEvidence), 47
evidence<-,BNEngineNDB-method

(BNEngineNDB-class), 19
evidence<-,StudentRecord-method

(StudentRecord-class), 66
EvidenceSet, 5, 6, 8, 9, 16, 19, 20, 32, 32, 33,

43, 47–49, 51, 53–55, 68, 73, 74, 76
EvidenceSet-class, 33

fetchNextEvidence,BNEngine-method
(BNEngine-class), 8

fetchNextMessage, 51, 53
fetchSM, 35, 38, 40, 41, 58, 62
flog.logger, 6
flog.threshold, 28
fromJSON, 25, 28, 37, 40, 55–58
futile.logger, 26, 31

generateListenerExports, 29, 31
getIssues (logIssue), 50
getIssues,StudentRecord-method

(logIssue), 50
getManyRecs, 55, 58
getOneRec, 55, 58
getRecordForUser, 5, 6, 8, 10, 13, 17, 18, 21,

37, 76
getSR, 8, 37, 38, 39, 69, 70
getSR,StudentRecordSet-method

(StudentRecordSet-class), 70

handleEvidence, 3, 8, 10, 13, 17, 18, 21, 34,
38, 41, 44, 49, 51, 53, 54

handleEvidence (accumulateEvidence), 5
histNames (history), 43
histNames,StudentRecord-method

(StudentRecord-class), 66
history, 43, 73, 74
history,StudentRecord,character-method

(StudentRecord-class), 66

importMessages, 31

JSONDB, 12, 68, 71

Listener, 29, 78
ListenerSet, 11, 13, 17, 18, 29–31, 78, 79
loadManifest, 8, 10, 13, 17, 18, 21, 45
logEvidence, 6, 8, 10, 13, 17, 18, 21, 34, 47
logIssue, 50

INDEX 83

logIssue,StudentRecord,ANY-method
(logIssue), 50

logIssue,StudentRecord,character-method
(logIssue), 50

m_id, 40, 48, 49
mainLoop, 6, 8, 10, 13, 14, 17, 18, 20, 21, 28,

31, 51
makeDBuri, 11, 12
markAsError, 50
markAsProcessed, 6, 51, 53
markProcessed,BNEngine-method

(BNEngine-class), 8
MessageQueue, 12, 51, 53
mongo, 67
MongoDB, 11, 15

NeticaSession, 24, 27
newBNEngineMongo (BNEngineMongo), 11
newBNEngineNDB (BNEngineNDB), 17
newSR, 69
newSR (getSR), 39
newSR,StudentRecordSet-method

(StudentRecordSet-class), 70
NNWarehouse, 24, 26
notifyListeners, 79
notifyListeners,BNEngine-method

(BNEngine-class), 8

observables, 33, 34, 53, 76
observables,EvidenceSet-method

(EvidenceSet-class), 33
Omega2Pnet, 24, 26

P4Message, 3, 32–34, 49, 54, 78, 79
parseEvidence, 33, 34, 55
parseStats, 56
parseStudentRecord, 57
Pnet, 35, 46, 58, 62, 65, 67, 71, 72, 76
PnetAdjoin, 76
PnetCompile, 60, 61, 74, 76
PnetDetach, 76
PnetSerialize, 58
PnetWarehouse, 8–11, 13, 15–18, 20, 21, 24,

35, 45, 46, 58, 60, 61, 68, 69, 71, 72,
76

Pnode, 43, 73
PnodeEvidence, 76
PnodeMargin, 56, 73, 74

PnodeWarehouse, 24
Proc4, 3
processed, 51

Qmat2Pnet, 24, 26

read.csv, 72
recover, 5, 6, 73, 76, 78
resetListeners, 29, 31
resetProcessedMessages, 31

saveSR, 5, 6, 60, 61, 69
saveSR (getSR), 39
saveSR,StudentRecordSet-method

(StudentRecordSet-class), 70
seqno, 33, 34, 40
seqno (logEvidence), 47
seqno,EvidenceSet-method

(EvidenceSet-class), 33
seqno,StudentRecord-method

(StudentRecord-class), 66
seqno<- (logEvidence), 47
seqno<-,EvidenceSet-method

(EvidenceSet-class), 33
seqno<-,StudentRecord-method

(StudentRecord-class), 66
serializeJSON, 55, 58
setupDefaultSR, 8, 10, 13, 17, 18, 21, 37, 38,

40, 41, 60, 62, 73
show,EvidenceSet-method

(EvidenceSet-class), 33
show,StudentRecord-method

(StudentRecord-class), 66
sm, 22, 58, 60, 62, 73, 76, 78
sm,StudentRecord-method

(StudentRecord-class), 66
sm<- (sm), 62
sm<-,StudentRecord-method

(StudentRecord-class), 66
ssl_options, 12
stat, 63
stat,StudentRecord,character-method

(StudentRecord-class), 66
Statistic, 9–11, 15, 20, 22, 23, 57, 64, 78, 79
statNames (stat), 63
statNames,StudentRecord-method

(StudentRecord-class), 66
stats, 57, 78, 79
stats (stat), 63

84 INDEX

stats,StudentRecord-method
(StudentRecord-class), 66

stats2json (parseStats), 56
StudentRecord, 3, 5, 6, 22, 33–35, 37, 38, 40,

41, 43, 44, 47–50, 54, 57, 58, 60–64,
64, 65, 67–74, 76, 78, 79

StudentRecord-class, 66
StudentRecordSet, 9–13, 15, 17, 18, 20, 21,

37, 38, 40, 41, 58, 60, 61, 68, 68, 69,
72

StudentRecordSet-class, 70
system2, 25

timestamp, 51
timestamp,StudentRecord-method

(StudentRecord-class), 66
toJSON, 55–58
toString,EvidenceSet-method

(EvidenceSet-class), 33
toString,StudentRecord-method

(StudentRecord-class), 66
trimTable, 72

uid, 5, 35, 40, 48
uid,StudentRecord-method

(StudentRecord-class), 66
unboxer, 56, 57
unpackSM, 62
unpackSM (fetchSM), 35
unparseStats (parseStats), 56
updateHist, 5, 6, 8, 10, 13, 17, 18, 21, 44, 73,

76, 79
updateRecord, 5, 6, 10
updateRecord (logEvidence), 47
updateSM, 5, 6, 8, 10, 13, 17, 18, 21, 73, 74,

75, 78, 79
updateStats, 5, 6, 8, 10, 13, 17, 18, 21–23,

60, 61, 74, 76, 78

Warehouse, 24, 26
WarehouseManifest, 45, 46
WarehouseSupply, 76
WarehouseUnpack, 35, 65
withFlogging, 6
woeBal, 44, 73, 74
woeHist, 44, 73, 74

	EABN-package
	accumulateEvidence
	BNEngine-class
	BNEngineMongo
	BNEngineMongo-class
	BNEngineNDB
	BNEngineNDB-class
	configStats
	doBuild
	doRunrun
	EvidenceSet
	EvidenceSet-class
	fetchSM
	getRecordForUser
	getSR
	history
	loadManifest
	logEvidence
	logIssue
	mainLoop
	observables
	parseEvidence
	parseStats
	parseStudentRecord
	setupDefaultSR
	sm
	stat
	StudentRecord
	StudentRecord-class
	StudentRecordSet
	StudentRecordSet-class
	trimTable
	updateHist
	updateSM
	updateStats
	Index

